14,618 research outputs found

    State observation and sensor selection for nonlinear networks

    Full text link
    A large variety of dynamical systems, such as chemical and biomolecular systems, can be seen as networks of nonlinear entities. Prediction, control, and identification of such nonlinear networks require knowledge of the state of the system. However, network states are usually unknown, and only a fraction of the state variables are directly measurable. The observability problem concerns reconstructing the network state from this limited information. Here, we propose a general optimization-based approach for observing the states of nonlinear networks and for optimally selecting the observed variables. Our results reveal several fundamental limitations in network observability, such as the trade-off between the fraction of observed variables and the observation length on one side, and the estimation error on the other side. We also show that owing to the crucial role played by the dynamics, purely graph- theoretic observability approaches cannot provide conclusions about one's practical ability to estimate the states. We demonstrate the effectiveness of our methods by finding the key components in biological and combustion reaction networks from which we determine the full system state. Our results can lead to the design of novel sensing principles that can greatly advance prediction and control of the dynamics of such networks.Comment: Matches publication version to appear in IEEE Transactions on Control of Network Systems. 28 pages and 13 figure

    Flavor ordering of elliptic flows at high transverse momentum

    Get PDF
    Based on the quark coalescence model for the parton-to-hadron phase transition in ultra-relativistic heavy ion collisions, we relate the elliptic flow (v2v_2) of high \pt hadrons to that of high \pt quarks. For high \pt hadrons produced from an isospin symmetric and quark-antiquark symmetric partonic matter, magnitudes of their elliptic flows follow a flavor ordering as (v2,π=v2,N)>(v2,Λ=v2,Σ)>v2,K>v2,Ξ>(v2,ϕ=v2,Ω)(v_{2,\pi}=v_{2,N}) > (v_{2,\Lambda}=v_{2,\Sigma}) > v_{2,K} > v_{2,\Xi} > (v_{2,\phi}=v_{2,\Omega}) if strange quarks have a smaller elliptic flow than light quarks. The elliptic flows of high \pt hadrons further follow a simple quark counting rule if strange quarks and light quarks have same high \pt spectrum and coalescence probability.Comment: 4 pages, 1 figure, revte

    Multimode pulsation of the ZZ Ceti star GD 154

    Full text link
    We present the results of a comparative period search on different time-scales and modelling of the ZZ Ceti (DAV) star GD 154. We determined six frequencies as normal modes and four rotational doublets around the ones having the largest amplitude. Two normal modes at 807.62 and 861.56 microHz have never been reported before. A rigorous test revealed remarkable intrinsic amplitude variability of frequencies at 839.14 and 861.56 microHz over a 50 d time-scale. In addition, the multimode pulsation changed to monoperiodic pulsation with an 843.15 microHz dominant frequency at the end of the observing run. The 2.76 microHz average rotational split detected led to a determination of a 2.1 d rotational period for GD 154. We searched for model solutions with effective temperatures and log g close to the spectroscopically determined ones. The best-fitting models resulting from the grid search have M_H between 6.3 x 10^-5 and 6.3 x 10^-7 M*, which means thicker hydrogen layer than the previous studies suggested. Our investigations show that mode trapping does not necessarily operate in all of the observed modes and the best candidate for a trapped mode is at 2484 microHz.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    Freeze out in narrow and wide layers

    Full text link
    The freeze out of particles from a layer of finite thickness is discussed in a phenomenological kinetic model. The proposed model, based on the Modified Boltzman Transport Equation, is Lorentz invariant and can be applied equally well for the freeze out layers with space-like and time-like normal vectors. It leads to non-equilibrated post freeze out distributions. The dependence of the resulting distribution on the thickness of the layer is presented and discussed for a space-like freeze out scenario.Comment: Minor corrections to improve the presentation. 4 pages, 2 figures, to appear in the Proceedings of "Quark Matter 2005", August 4-9, 2005, Budapest, Hungar

    Covariant kinetic freeze out description through a finite space-time layer

    Full text link
    We develop and analyze a covariant FO probability valid for a finite space-time layer.Comment: Proceedings of "Quark Matter 2005", 4 pages, 3 figures, with correction

    Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture

    Rethinking the QCD collisional energy loss

    Get PDF
    It is shown that to leading order the collisional energy loss of an energetic parton in the hot quark gluon plasma reads dE/dxα(mD2)T2dE/dx \sim \alpha(m_D^2)T^2, where the scale of the coupling is determined by the (parametrically soft) Debye screening mass. Compared to previous expressions derived by Bjorken and other authors, dEB/dxα2T2ln(ET/mD2)dE^B/dx \sim \alpha^2 T^2 \ln(ET/m_D^2), the rectified result takes into account the running of the coupling, as dictated by quantum corrections beyond tree level. As one significant consequence, due to asymptotic freedom, the QCD collisional energy loss becomes independent of the jet energy in the limit ETE \gg T. It is advocated that this resummation improved perturbative result might be useful to (re-)estimate the collisional energy loss for temperatures relevant in heavy ion phenomenology.Comment: contribution to "Hot Quarks 2006", Villasimius, Italy, 15-20 May 200

    The 3rd Flow Component as a QGP Signal

    Full text link
    Earlier fluid dynamical calculations with QGP show a softening of the directed flow while with hadronic matter this effect is absent. On the other hand, we indicated that a third flow component shows up in the reaction plane as an enhanced emission, which is orthogonal to the directed flow. This is not shadowed by the deflected projectile and target, and shows up at measurable rapidities, ycm=12y_cm = 1-2. To study the formation of this effect initial stages of relativistic heavy ion collisions are studied. An effective string rope model is presented for heavy ion collisions at RHIC energies. Our model takes into account baryon recoil for both target and projectile, arising from the acceleration of partons in an effective field. The typical field strength (string tension) for RHIC energies is about 5-12 GeV/fm, what allows us to talk about "string ropes". The results show that QGP forms a tilted disk, such that the direction of the largest pressure gradient stays in the reaction plane, but deviates from both the beam and the usual transverse flow directions. The produced initial state can be used as an initial condition for further hydrodynamical calculations. Such initial conditions lead to the creation of third flow component. Recent v1v_1 measurements are promising that this effect can be used as a diagnostic tool of the QGP
    corecore