14,618 research outputs found
State observation and sensor selection for nonlinear networks
A large variety of dynamical systems, such as chemical and biomolecular
systems, can be seen as networks of nonlinear entities. Prediction, control,
and identification of such nonlinear networks require knowledge of the state of
the system. However, network states are usually unknown, and only a fraction of
the state variables are directly measurable. The observability problem concerns
reconstructing the network state from this limited information. Here, we
propose a general optimization-based approach for observing the states of
nonlinear networks and for optimally selecting the observed variables. Our
results reveal several fundamental limitations in network observability, such
as the trade-off between the fraction of observed variables and the observation
length on one side, and the estimation error on the other side. We also show
that owing to the crucial role played by the dynamics, purely graph- theoretic
observability approaches cannot provide conclusions about one's practical
ability to estimate the states. We demonstrate the effectiveness of our methods
by finding the key components in biological and combustion reaction networks
from which we determine the full system state. Our results can lead to the
design of novel sensing principles that can greatly advance prediction and
control of the dynamics of such networks.Comment: Matches publication version to appear in IEEE Transactions on Control
of Network Systems. 28 pages and 13 figure
Flavor ordering of elliptic flows at high transverse momentum
Based on the quark coalescence model for the parton-to-hadron phase
transition in ultra-relativistic heavy ion collisions, we relate the elliptic
flow () of high \pt hadrons to that of high \pt quarks. For high \pt
hadrons produced from an isospin symmetric and quark-antiquark symmetric
partonic matter, magnitudes of their elliptic flows follow a flavor ordering as
if strange quarks have a
smaller elliptic flow than light quarks. The elliptic flows of high \pt
hadrons further follow a simple quark counting rule if strange quarks and light
quarks have same high \pt spectrum and coalescence probability.Comment: 4 pages, 1 figure, revte
Multimode pulsation of the ZZ Ceti star GD 154
We present the results of a comparative period search on different
time-scales and modelling of the ZZ Ceti (DAV) star GD 154. We determined six
frequencies as normal modes and four rotational doublets around the ones having
the largest amplitude. Two normal modes at 807.62 and 861.56 microHz have never
been reported before. A rigorous test revealed remarkable intrinsic amplitude
variability of frequencies at 839.14 and 861.56 microHz over a 50 d time-scale.
In addition, the multimode pulsation changed to monoperiodic pulsation with an
843.15 microHz dominant frequency at the end of the observing run. The 2.76
microHz average rotational split detected led to a determination of a 2.1 d
rotational period for GD 154. We searched for model solutions with effective
temperatures and log g close to the spectroscopically determined ones. The
best-fitting models resulting from the grid search have M_H between 6.3 x 10^-5
and 6.3 x 10^-7 M*, which means thicker hydrogen layer than the previous
studies suggested. Our investigations show that mode trapping does not
necessarily operate in all of the observed modes and the best candidate for a
trapped mode is at 2484 microHz.Comment: 11 pages, 11 figures, accepted for publication in MNRA
Freeze out in narrow and wide layers
The freeze out of particles from a layer of finite thickness is discussed in
a phenomenological kinetic model. The proposed model, based on the Modified
Boltzman Transport Equation, is Lorentz invariant and can be applied equally
well for the freeze out layers with space-like and time-like normal vectors. It
leads to non-equilibrated post freeze out distributions. The dependence of the
resulting distribution on the thickness of the layer is presented and discussed
for a space-like freeze out scenario.Comment: Minor corrections to improve the presentation. 4 pages, 2 figures, to
appear in the Proceedings of "Quark Matter 2005", August 4-9, 2005, Budapest,
Hungar
Covariant kinetic freeze out description through a finite space-time layer
We develop and analyze a covariant FO probability valid for a finite
space-time layer.Comment: Proceedings of "Quark Matter 2005", 4 pages, 3 figures, with
correction
Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors
We investigated the timing jitter of superconducting nanowire avalanche
photodetectors (SNAPs, also referred to as cascade switching superconducting
single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB)
near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar
to standard 100 nm wide superconducting nanowire single-photon detectors. At
lower values of IB, the instrument response function (IRF) of the detectors
became wider, more asymmetric, and shifted to longer time delays. We could
reproduce the experimentally observed IRF time-shift in simulations based on an
electrothermal model, and explain the effect with a simple physical picture
Rethinking the QCD collisional energy loss
It is shown that to leading order the collisional energy loss of an energetic
parton in the hot quark gluon plasma reads , where
the scale of the coupling is determined by the (parametrically soft) Debye
screening mass. Compared to previous expressions derived by Bjorken and other
authors, , the rectified result takes
into account the running of the coupling, as dictated by quantum corrections
beyond tree level. As one significant consequence, due to asymptotic freedom,
the QCD collisional energy loss becomes independent of the jet energy in the
limit . It is advocated that this resummation improved perturbative
result might be useful to (re-)estimate the collisional energy loss for
temperatures relevant in heavy ion phenomenology.Comment: contribution to "Hot Quarks 2006", Villasimius, Italy, 15-20 May 200
The 3rd Flow Component as a QGP Signal
Earlier fluid dynamical calculations with QGP show a softening of the
directed flow while with hadronic matter this effect is absent. On the other
hand, we indicated that a third flow component shows up in the reaction plane
as an enhanced emission, which is orthogonal to the directed flow. This is not
shadowed by the deflected projectile and target, and shows up at measurable
rapidities, . To study the formation of this effect initial stages
of relativistic heavy ion collisions are studied. An effective string rope
model is presented for heavy ion collisions at RHIC energies. Our model takes
into account baryon recoil for both target and projectile, arising from the
acceleration of partons in an effective field. The typical field strength
(string tension) for RHIC energies is about 5-12 GeV/fm, what allows us to talk
about "string ropes". The results show that QGP forms a tilted disk, such that
the direction of the largest pressure gradient stays in the reaction plane, but
deviates from both the beam and the usual transverse flow directions. The
produced initial state can be used as an initial condition for further
hydrodynamical calculations. Such initial conditions lead to the creation of
third flow component. Recent measurements are promising that this effect
can be used as a diagnostic tool of the QGP
- …
