3,690 research outputs found
An approach for solving the boundary free edge difficulties in SPH modelling: application to a viscous accretion disc in close binaries
In this work, we propose a SPH interpolating Kernel reformulation suitable
also to treat free edge boundaries in the computational domain. Application to
both inviscid and viscous stationary low compressibility accretion disc models
in Close Binaries (CB) are shown. The investigation carried out in this paper
is a consequence of the fact that a low compressibility modelling is crucial to
check numerical reliability.
Results show that physical viscosity supports a well-bound accretion disc
formation, despite the low gas compressibility, when a Gaussian-derived Kernel
(from the Error Function) is assumed, in extended particle range - whose Half
Width at Half Maximum (HWHM) is fixed to a constant value - without any
spatial restrictions on its radial interaction (hereinafter GASPHER). At the
same time, GASPHER ensures adequate particle interpolations at the boundary
free edges. Both SPH and adaptive SPH (hereinafter ASPH) methods lack accuracy
if there are not constraints on the boundary conditions, in particular at the
edge of the particle envelope: Free Edge (FE) conditions. In SPH, an
inefficient particle interpolation involves a few neighbour particles; instead,
in the second case, non-physical effects involve both the boundary layer
particles themselves and the radial transport.
Either in a regime where FE conditions involve the computational domain, or
in a viscous fluid dynamics, or both, a GASPHER scheme can be rightly adopted
in such troublesome physical regimes. Despite the applied low compressibiity
condition, viscous GASPHER model shows clear spiral pattern profiles
demonstrating the better quality of results compared to SPH viscous ones.
Moreover a successful comparison of results concerning GASPHER 1D inviscid
shock tube with analytical solution is also reported.Comment: 18 pages, 12 figure
Climate change, the green economy and reimagining the city: the case of structurally disadvantaged European maritime port cities
The concept of the New Environmental Politics of Urban Development (NEPUD) examines the impact of international and national environmental regulation on the politics of urban development. The NEPUD concept emerged from case studies of environmental governance in entrepreneurial cities. However, little is known about the concept’s relevance for less competitive cities, especially urban centres facing profound problems associated with economic decline, social deprivation and negative external images or ‘structurally disadvantaged cities.’ This paper examines how the NEPUD has played out within two structurally disadvantaged maritime port cities in Northern Europe, Hull (UK) and Bremerhaven (Germany). Both cities face serious social and economic challenges associated with long-term industrial decline, such as high unemployment rates, low skill levels, economic peripherality, and poor external images. Nevertheless, new opportunities opened up by climate change and the green economy have prompted political actors in Hull and Bremerhaven to build new alliances between local government, business and civil society and enhance governance capacities on climate change and green urban development. Highlighting similarities and differences between these two places, the paper reveals how climate change regulations provide opportunities for certain structurally disadvantaged cities to attract ‘green jobs’ and transform their external image
Inflatable device for installing strain gage bridges
Methods and devices for installing in a tubular shaft multiple strain gages are disclosed with focus on a method and a device for pneumatically forcing strain gages into seated engagement with the internal surfaces of a tubular shaft in an installation of multiple strain gages in a tubular shaft. The strain gages or other electron devices are seated in a template-like component which is wrapped about a pneumatically expansible body. The component is inserted into a shaft and the body is pneumatically expanded after a suitable adhesive was applied to the surfaces
Angular Signatures of Annihilating Dark Matter in the Cosmic Gamma-Ray Background
The extragalactic cosmic gamma-ray background (CGB) is an interesting channel
to look for signatures of dark matter annihilation. In particular, besides the
imprint in the energy spectrum, peculiar anisotropy patterns are expected
compared to the case of a pure astrophysical origin of the CGB. We take into
account the uncertainties in the dark matter clustering properties on
sub-galactic scales, deriving two possible anisotropy scenarios. A clear dark
matter angular signature is achieved when the annihilation signal receives only
a moderate contribution from sub-galactic clumps and/or cuspy haloes.
Experimentally, if galactic foregrounds systematics are efficiently kept under
control, the angular differences are detectable with the forthcoming GLAST
observatory, provided that the annihilation signal contributes to the CGB for a
fraction >10-20%. If, instead, sub-galactic structures have a more prominent
role, the astrophysical and dark matter anisotropies become degenerate,
correspondingly diluting the DM signature. As complementary observables we also
introduce the cross-correlation between surveys of galaxies and the CGB and the
cross-correlation between different energy bands of the CGB and we find that
they provide a further sensitive tool to detect the dark matter angular
signatures.Comment: 13 pages, 8 figures; improved discussion; matches published versio
Hydrodynamic simulations with the Godunov SPH
We present results based on an implementation of the Godunov Smoothed
Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the
GADGET-3 hydrodynamic code. We first review the derivation of the GSPH
discretization of the equations of moment and energy conservation, starting
from the convolution of these equations with the interpolating kernel. The two
most important aspects of the numerical implementation of these equations are
(a) the appearance of fluid velocity and pressure obtained from the solution of
the Riemann problem between each pair of particles, and (b the absence of an
artificial viscosity term. We carry out three different controlled
hydrodynamical three-dimensional tests, namely the Sod shock tube, the
development of Kelvin-Helmholtz instabilities in a shear flow test, and the
"blob" test describing the evolution of a cold cloud moving against a hot wind.
The results of our tests confirm and extend in a number of aspects those
recently obtained by Cha (2010): (i) GSPH provides a much improved description
of contact discontinuities, with respect to SPH, thus avoiding the appearance
of spurious pressure forces; (ii) GSPH is able to follow the development of
gas-dynamical instabilities, such as the Kevin--Helmholtz and the
Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl
structures in the shear-flow test and the dissolution of the cold cloud in the
"blob" test.
We also discuss in detail the effect on the performances of GSPH of changing
different aspects of its implementation. The results of our tests demonstrate
that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled
to an N-body solver, for astrophysical and cosmological applications.
[abridged]Comment: 19 pages, 13 figures, MNRAS accepted, high resolution version can be
obtained at
http://adlibitum.oats.inaf.it/borgani/html/papers/gsph_hydrosim.pd
The X-ray Ridge Surrounding Sgr A* at the Galactic Center
We present the first detailed simulation of the interaction between the
supernova explosion that produced Sgr A East and the wind-swept inner ~ 2-pc
region at the Galactic center. The passage of the supernova ejecta through this
medium produces an X-ray ridge ~ 9'' to 15'' to the NE of the supermassive
black hole Sagittarius A* (Sgr A*). We show that the morphology and X-ray
intensity of this feature match very well with recently obtained Chandra
images, and we infer a supernova remnant age of less than 2,000 years. This
young age--a factor 3--4 lower than previous estimates--arises from our
inclusion of stellar wind effects in the initial (pre-explosion) conditions in
the medium. The supernova does not clear out the central ~ 0.2-pc region around
Sgr~A* and does not significantly alter the accretion rate onto the central
black hole upon passage through the Galactic center.Comment: 10 pages, 3 figures, submitted to ApJ
An approach to the Riemann problem in the light of a reformulation of the state equation for SPH inviscid ideal flows: a highlight on spiral hydrodynamics in accretion discs
In physically inviscid fluid dynamics, "shock capturing" methods adopt either
an artificial viscosity contribution or an appropriate Riemann solver
algorithm. These techniques are necessary to solve the strictly hyperbolic
Euler equations if flow discontinuities (the Riemann problem) are to be solved.
A necessary dissipation is normally used in such cases. An explicit artificial
viscosity contribution is normally adopted to smooth out spurious heating and
to treat transport phenomena. Such a treatment of inviscid flows is also widely
adopted in the Smooth Particle Hydrodynamics (SPH) finite volume free
Lagrangian scheme. In other cases, the intrinsic dissipation of Godunov-type
methods is implicitly useful. Instead "shock tracking" methods normally use the
Rankine-Hugoniot jump conditions to solve such problems. A simple, effective
solution of the Riemann problem in inviscid ideal gases is here proposed, based
on an empirical reformulation of the equation of state (EoS) in the Euler
equations in fluid dynamics, whose limit for a motionless gas coincides with
the classical EoS of ideal gases. The application of such an effective solution
to the Riemann problem excludes any dependence, in the transport phenomena, on
particle smoothing resolution length in non viscous SPH flows. Results on
1D shock tube tests, as well as examples of application for 2D turbulence and
2D shear flows are here shown. As an astrophysical application, a much better
identification of spiral structures in accretion discs in a close binary (CB),
as a result of this reformulation is also shown here.Comment: 19 pages, 17 figure
Composition Mixing during Blue Straggler Formation and Evolution
We use smoothed-particle hydrodynamics to examine differences between direct
collisions of single stars and binary star mergers in their roles as possible
blue straggler star formation mechanisms. We find in all cases that core helium
in the progenitor stars is largely retained in the core of the remnant, almost
independent of the type of interaction or the central concentration of the
progenitor stars.
We have also modelled the subsequent evolution of the hydrostatic remnants,
including mass loss and energy input from the hydrodynamical interaction. The
combination of the hydrodynamical and hydrostatic models enables us to predict
that little mixing will occur during the merger of two globular cluster stars
of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque
(1995), we find that neither completely mixed nor unmixed models can match the
absolute colors of observed blue stragglers in NGC 6397 at all luminosity
levels. We also find that the color distribution is probably the crucial test
for explanations of BSS formation - if stellar collisions or mergers are the
correct mechanisms, a large fraction of the lifetime of the straggler must be
spent away from the main sequence. This constraint appears to rule out the
possibility of completely mixed models. For NGC 6397, unmixed models predict
blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely
mixed models predict a range from about 0.6 to 4 Gyr.Comment: AASTeX, 28 pg., accepted for ApJ, also available at
http://ucowww.ucsc.edu/~erics/bspaper.htm
3D geological models and their hydrogeological applications : supporting urban development : a case study in Glasgow-Clyde, UK
Urban planners and developers in some parts of the United Kingdom can now access geodata in an easy-to-retrieve and understandable format. 3D attributed geological framework models and associated GIS outputs, developed by the British Geological Survey (BGS), provide a predictive tool for planning site investigations for some of the UK's largest regeneration projects in the Thames and Clyde River catchments.
Using the 3D models, planners can get a 3D preview of properties of the subsurface using virtual cross-section and borehole tools in visualisation software, allowing critical decisions to be made before any expensive site investigation takes place, and potentially saving time and money. 3D models can integrate artificial and superficial deposits and bedrock geology, and can be used for recognition of major resources (such as water, thermal and sand and gravel), for example in buried valleys, groundwater modelling and assessing impacts of underground mining. A preliminary groundwater recharge and flow model for a pilot area in Glasgow has been developed using the 3D geological models as a framework.
This paper focuses on the River Clyde and the Glasgow conurbation, and the BGS's Clyde Urban Super-Project (CUSP) in particular, which supports major regeneration projects in and around the City of Glasgow in the West of Scotland
- …
