755 research outputs found

    INTEGRATED MULTISENSOR RANGE FINDERS

    Get PDF
    Initially, the system presented was designed to increase the autonomy of robots working in difficult surroundings congested with obstacles. The system can have applications other than in robotics. The system combines: an ultrasonic telemeter for distance measurement, an optical device based on photovoltaic cells, allowing the classification of tints of plane obstacles in a group of colours previously defined by the user, and a range finding system composed of a monochromatic laser associated with a solid state detector used for the localisation of the vertical edges of polyhedral obstacles. Each of these base sensors delivers an elementary information (distance, tint, coordinates of vertical edges) which is determined by processing the echo from the obstacle of a previously transmitted signal (active detection)

    Identification of new DNA i-motif binding ligands through a fluorescent intercalator displacement assay

    Get PDF
    i-Motifs are quadruplex DNA structures formed from sequences rich in cytosine and held together by intercalated, hemi-protonated cytosine–cytosine base pairs. These sequences are prevalent in gene promoter regions and may play a role in gene transcription. Targeting these structures with ligands could provide a novel way to target genetic disease but there are very few ligands which have been shown to interact with i-motif DNA. Fluorescent intercalator displacement (FID) assays are a simple way to screen ligands against DNA secondary structures. Here we characterise how thiazole orange interacts with i-motif DNA and assess its ability for use in a FID assay. Additionally, we report FID-based ligand screening using thiazole orange against the i-motif forming sequence from the human telomere to reveal new i-motif binding compounds which have the potential for further development

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    Synthesis, analysis and biological evaluation of novel indolquinonecryptolepine analogues as potential anti-tumour agents.

    Get PDF
    A small library of cryptolepine analogues were synthesised incorporating halogens and/or nitrogen containing side chains to optimise their interaction with the sugar-phosphate backbone of DNA to give improved binding, interfering with topoisomerase II hence enhancing cytotoxicity. Cell viability, DNA binding and Topoisomerase II inhibition is discussed for these compounds. Fluorescence microscopy was used to investigate the uptake of the synthesised cryptolepines into the nucleus. We report the synthesis and anti-cancer biological evaluation of nine novel cryptolepine analogues, which have greater cytotoxicity than the parent compound and are important lead compounds in the development of novel potent and selective indoloquinone anti-neoplastic agents

    A gold(III) pincer ligand scaffold for the synthesis of binuclear and bioconjugated complexes: synthesis and anticancer potential

    Get PDF
    Cyclometalated (C^N^C)Au(III) complexes bearing functionalized N-heterocyclic carbene (NHC) ligands provide a high-yielding, modular route to bioconjugated and binuclear complexes. This methodology has been applied to the synthesis of bioconjugated complexes presenting biotin and 17α-ethynylestradiol vectors, as well as to the synthesis of bimetallic Au(III)/Au(I) complexes. The in vitro antiproliferative activities of these compounds against various cancer cells lines depend on the linker length, with the longer linker being the most potent. The estradiol conjugate AuC6Estra proved to be more toxic against the estrogen receptor positive (ER+) cancer cells than against the ER- cancer cells and non-cancer cells. The bimetallic complex AuC6Au was more selective for breast cancer cells with respect to a healthy cell standard than the monometallic complex AuNHC. The metal uptake study on cells expressing or not biotin and estrogen receptors revealed an improved and targeted delivery of gold for both the bioconjugated complexes AuC6Biot and AuC6Estra compared to the non-vectorised analogue AuNHC. The investigations of the interaction of the bioconjugates and bimetallic complexes with human telomeric G-quadruplex DNA using FRET-melting techniques revealed a reduced ability to stabilize this DNA structure with respect to the non-vectorised analogue AuNHC

    Development of a series of bis-triazoles as G-quadruplex ligands

    Get PDF
    Maintenance of telomeres – specialized complexes that protect the ends of chromosomes – is provided by the enzyme complex telomerase, which is a key factor that is activated in more than 80% of cancer cells, but absent in most normal cells. Targeting telomere maintenance mechanisms could potentially halt tumour growth across a broad spectrum of cancer types. Telomeric ends of chromosomes consist of noncoding repeat sequences of guanine-rich DNA. These G-rich ends can fold into structures called G-quadruplexes. Stabilization of G-quadruplexes by small binding molecules called G4 ligands can prevent telomerase enzyme from maintaining telomere integrity in cancer cells. G quadruplexes can exist in other parts of the genome too, especially within promoter sequences of oncogenes, and also be interesting drug targets. Here, we describe the development of a new series of novel bis-triazoles, designed to stabilize G-quadruplex structures selectively as G4 ligands. FRET assays showed two compounds to be moderately effective G4 binders, with particular affinity for the quadruplex formed by the Hsp90a promoter sequence, and good selectivity for G-quadruplex DNA vs. duplex DNA. However, CD spectroscopy failed to provide any information about the folding topology of the human telomeric G-quadruplex resulting from its interaction with one of the ligands. All the new ligands showed potent cell growth inhibitory properties against human colon and pancreatic cancer cell lines, as evidenced by the MTT assay; notably, they were more potent against cancer cells than in fetal lung fibroblasts. Docking studies were performed to rationalize the affinity of these ligands for binding to the telomeric parallel G-quadruplex DNA

    Common G-Quadruplex Binding Agents Found to Interact With i-Motif-Forming DNA: Unexpected Multi-Target-Directed Compounds

    Get PDF
    G-quadruplex (G4) and i-motif (iM) are four-stranded non-canonical nucleic acid structural arrangements. Recent evidences suggest that these DNA structures exist in living cells and could be involved in several cancer-related processes, thus representing an attractive target for anticancer drug discovery. Efforts toward the development of G4 targeting compounds have led to a number of effective bioactive ligands. Herein, employing several biophysical methodologies, we studied the ability of some well-known G4 ligands to interact with iM-forming DNA. The data showed that the investigated compounds are actually able to interact with both DNA in vitro, thus acting de facto as multi-target-directed agents. Interestingly, while all the compounds stabilize the G4, some of them significantly reduce the stability of the iM. The present study highlights the importance, when studying G4-targeting compounds, of evaluating also their behavior toward the i-motif counterpart

    Improved performances of catalytic G-quadruplexes (G4-DNAzymes) via the chemical modifications of the DNA backbone to provide Gquadruplexes with double 3′-external G-quartets

    Get PDF
    Here we report on the design of a new catalytic G-quadruplex-DNA system (G4-DNAzyme) based on the modification of the DNA scaffold to provide the DNA pre-catalyst with two identical 3′-ends, known to bemore catalytically proficient than the 5′-ends. To this end, we introduced a 5′-5′ inversion of polarity site in the middle of the G4-forming sequences AG4A andAG6A to obtain d(3′AGG5′-5′GGA3′) (orAG2-G2A) and d(3′AGGG5′-5′GGGA3′) (or AG3-G3A) that fold into stable G4 whose tetramolecular nature was confirmed via nuclear magnetic resonance (NMR) and circular dichroism(CD) investigations. Both AG2-G2AandAG3-G3A display two identical external G-quartets (3′-ends) known to interact with the cofactor hemin with a high efficiency, making the resulting complex competent to performhemoprotein-like catalysis (G4-DNAzyme). A systematic comparison of the performances of modified and unmodified G4s lends credence to the relevance of the modification exploited here (5′-5′ inversion of polarity site), which represents a new chemical opportunity to improve the overall activity of catalytic G4s

    Modelling the regulation of telomere length: the effects of telomerase and G-quadruplex stabilising drugs

    Get PDF
    Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available

    “One Ring to Bind Them All”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

    Get PDF
    Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes), and in addressing both synthetic issues and biological aspects
    corecore