247 research outputs found

    Sequential Fully Implicit Formulation for Compositional Simulation using Natural Variables

    Full text link
    The Sequential Fully Implicit (SFI) method was proposed to simulate coupled immiscible multiphase fluid flow in porous media. Later, it was extended to the black-oil model, whereby the gas component is allowed to dissolve in the oil phase. Most recently, the SFI approach was extended to fully compositional isothermal displacements. SFI schemes solve the fully coupled system in two steps: (1) Construct and solve the pressure equation (flow problem). (2) Solve the coupled species transport equations for the phase saturations and phase compositions. Experience indicates that complex interphase mass transfer behaviors often lead to large numbers of SFI outer iterations compared with the Fully Implicit (FI) method. Here, we demonstrate that the convergence difficulties are directly related to the treatment of the coupling between the flow and transport problems, and we propose a new SFI variant based on a nonlinear overall-volume balance equation. The first step consists of forming and solving a nonlinear pressure equation, which is a weighted sum of all the component mass conservation equations. The second step of the new SFI scheme entails introducing the overall-mass density as a degree-of-freedom, and solving the full set of component conservation equations cast in the natural-variables form. During the second step, the pressure and the total-velocity fields are fixed. We analyze the `splitting errors' associated with the compositional SFI scheme, and we show how to control these errors in order to converge to the same solution as the Fully Implicit (FI) method. This robust sequential-implicit solution scheme allows for designing numerical methods and linear solvers that are optimized for the sub-problems of flow and transport.Comment: 52 pages, 36 figures, preprin

    Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser

    Get PDF
    French National Research Agency (ANR)We report continuous-wave (CW) laser operation of Pr3+-doped LiLuY4, LiYF4 and KY3F10 single crystals in the Red, Orange and Green spectral regions by using a new pumping scheme. The pump source is an especially developed compact, slightly tunable and intracavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power of 0.9W at 469.12 nm. At this pump wavelength, efficient room temperature laser emissions corresponding to the P-3(0)-> F-3(2), P-3(0)-> H-3(6) and P-3(1)-> H-3(5) Pr3+ transitions are observed. While a maximum slope efficiency of 45% is obtained in the red with Pr:LiYF4, the demonstration is made for the first time of the orange laser operation of Pr:KY3F10 at about 610 nm. (C) 2011 Optical Society of Americ

    Is cell-to-cell scale variability necessary in reservoir models?

    Get PDF
    Reservoir models typically contain hundreds-of-thousands to millions of grid cells in which petrophysical properties such as porosity and permeability vary on a cell-to-cell basis. However, although the petrophysical properties of rocks do vary on a point-to-point basis, this variability is not equivalent to the cell-to-cell variations in models. We investigate the impact of removing cell-to-cell variability on predictions of fluid flow in reservoir models. We remove cell-to-cell variability from models containing hundreds of thousands of unique porosity and permeability values to yield models containing just a few tens of unique porosity and permeability values grouped into a few internally homogeneous domains. The flow behavior of the original model is used as a reference. We find that the impact of cell-to-cell variability on predicted flow is small. Cell-to-cell variability is not necessary to capture flow in reservoir models; rather, it is the spatially correlated variability in petrophysical properties that is important. Reservoir modelling effort should focus on capturing correlated geologic domains in the most realistic and computationally efficient manner

    A Ce: LiCAF UV laser pumped by an intracavity frequency-doubled radiation at 532 nm

    Get PDF
    We examine here the lasing conditions of a Ce: LiCAF laser crystal placed intracavity with a BBO nonlinear crystal and pumped longitudinally throughout an input dichroic mirror by the 532 nm radiation of a frequency-doubled diode-pumped Nd: YAG laser. The comparison with the results obtained with an off-axis configuration shows lower laser slope efficiencies but similar laser performance in terms of threshold absorbed pump fluences (around 200 mJ/cm 2). A model based on revisited spectroscopic parameters is developed to account for these laser performance

    Host- and Strain-Specific Regulation of Influenza Virus Polymerase Activity by Interacting Cellular Proteins

    Get PDF
    Highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype have recently emerged from avian zoonotic reservoirs to cause fatal human disease. Adaptation of HPAI virus RNA-dependent RNA polymerase (PB1, PB2, and PA proteins) and nucleoprotein (NP) to interactions with mammalian host proteins is thought to contribute to the efficiency of viral RNA synthesis and to disease severity. While proteomics experiments have identified a number of human proteins that associate with H1N1 polymerases and/or viral ribonucleoprotein (vRNP), how these host interactions might regulate influenza virus polymerase functions and host adaptation has been largely unexplored. We took a functional genomics (RNA interference [RNAi]) approach to assess the roles of a network of human proteins interacting with influenza virus polymerase proteins in viral polymerase activity from prototype H1N1 and H5N1 viruses. A majority (18 of 31) of the cellular proteins tested, including RNA-binding (DDX17, DDX5, NPM1, and hnRNPM), stress (PARP1, DDB1, and Ku70/86), and intracellular transport proteins, were required for efficient activity of both H1N1 and H5N1 polymerases. NXP2 and NF90 antagonized both polymerases, and six more RNA-associated proteins exhibited strain-specific phenotypes. Remarkably, 12 proteins differentially regulated H5N1 polymerase according to PB2 genotype at mammalian-adaptive residue 627. Among these, DEAD box RNA helicase DDX17/p72 facilitated efficient human-adapted (627K) H5N1 virus mRNA and viral RNA (vRNA) synthesis in human cells. Likewise, the chicken DDX17 homologue was required for efficient avian (627E) H5N1 infection in chicken DF-1 fibroblasts, suggesting that this conserved virus-host interaction contributes to PB2-dependent host species specificity of influenza virus and ultimately to the outcome of human HPAI infections

    Functional Analysis of Conserved Motifs in Influenza Virus PB1 Protein

    Get PDF
    The influenza virus RNA polymerase complex is a heterotrimer composed of the PB1, PB2, and PA subunits. PB1, the catalytic core and structural backbone of the polymerase, possesses four highly conserved amino acid motifs that are present among all viral RNA-dependent RNA polymerases. A previous study demonstrated the importance of several of these conserved amino acids in PB1 for influenza polymerase activity through mutational analysis. However, a small number of viruses isolated in nature possesses non-consensus amino acids in one of the four motifs, most of which have not been tested for their replicative ability. Here, we assessed the transcription/replication activities of 25 selected PB1 mutations found in natural isolates by using minireplicon assays in human and avian cells. Most of the mutations tested significantly reduced polymerase activity. One exception was mutation K480R, observed in several pandemic (H1N1) 2009 viruses, which slightly increased polymerase activity relative to wild-type. However, in the background of the pandemic A/California/04/2009 (H1N1) virus, this mutation did not affect virus titers in cell culture. Our results further demonstrate the functional importance of the four conserved PB1 motifs in influenza virus transcription/replication. The finding of natural isolates with non-consensus PB1 motifs that are nonfunctional in minireplicon assays suggests compensatory mutations and/or mixed infections which may have ‘rescued’ the inactive PB1 protein

    Human-like PB2 627K Influenza Virus Polymerase Activity Is Regulated by Importin-α1 and -α7

    Get PDF
    Influenza A viruses may cross species barriers and transmit to humans with the potential to cause pandemics. Interplay of human- (PB2 627K) and avian-like (PB2 627E) influenza polymerase complexes with unknown host factors have been postulated to play a key role in interspecies transmission. Here, we have identified human importin-α isoforms (α1 and α7) as positive regulators of human- but not avian-like polymerase activity. Human-like polymerase activity correlated with efficient recruitment of α1 and α7 to viral ribonucleoprotein complexes (vRNPs) without affecting subcellular localization. We also observed that human-like influenza virus growth was impaired in α1 and α7 downregulated human lung cells. Mice lacking α7 were less susceptible to human- but not avian-like influenza virus infection. Thus, α1 and α7 are positive regulators of human-like polymerase activity and pathogenicity beyond their role in nuclear transport

    Activation of Type I and III Interferon Signalling Pathways Occurs in Lung Epithelial Cells Infected with Low Pathogenic Avian Influenza Viruses

    Get PDF
    The host response to the low pathogenic avian influenza (LPAI) H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN) expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG) expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture

    Energy transfer between Jahn-Teller systems in RbMnF3

    Get PDF
    Energy transfer in RbMnF3 was studied by time-resolved spectroscopy of 4T1g exciton and trap luminescence. Uniaxial stress was used to lift the orientational degeneracy of the Jahn-Teller distorted MnF6 octahedra. Stress also reduces the excitonic transfer rates considerably. The most drastic reduction of transfer and a nonexponential decay was observed with (110) stress. Evidence for two-dimensional transfer under (110) stress is given by computer simulation of random-walk processes and by a calculation of nearest-neighbour transfer integrals

    57-mJ 20-Hz multipass laser amplifier based on Yb:CaF 2 crystals (orale)

    Get PDF
    International audienceWe are presenting a 57 mJ multipass amplifier based on Yb:CaF 2 operating at 20 Hz. Special attention has been given to the thermal measurement and management in order to push it to the 100 Hz regime
    corecore