11 research outputs found

    Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26:H11 in southern Italy, summer 2013

    Get PDF
    In summer 2013, an excess of paediatric cases of haemolytic uraemic syndrome (HUS) in a southern region of Italy prompted the investigation of a community-wide outbreak of Shiga toxin 2-producing Escherichia coli (STEC) O26:H11 infections. Case finding was based on testing patients with HUS or bloody diarrhoea for STEC infection by microbiological and serological methods. A case-control study was conducted to identify the source of the outbreak. STEC O26 infection was identified in 20 children (median age 17 months) with HUS, two of whom reported severe neurological sequelae. No cases in adults were detected. Molecular typing showed that two distinct STEC O26:H11 strains were involved. The case-control study showed an association between STEC O26 infection and consumption of dairy products from two local plants, but not with specific ready-to-eat products. E.coli O26:H11 strains lacking the stx genes were isolated from bulk milk and curd samples, but their PFGE profiles did not match those of the outbreak isolates. This outbreak supports the view that infections with Stx2-producing E. coli O26 in children have a high probability of progressing to HUS and represent an emerging public health problem in Europe

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Abrupt Increase in Detection of Locally Acquired West-Nile-Virus-Lineage-2-Mediated Neuroinvasive Disease in a Previously Non-Endemic Area of Southern Italy (2023)

    No full text
    : West Nile virus (WNV) is a public health concern in Europe. Rising temperatures and the migration of potential vectors promote the spread of viruses to previously unaffected areas. In 2023, the Apulia region of Southern Italy experienced an unexpected increase in West Nile neuroinvasive disease (WNND); no such cases had been reported in the previous 10 years. Overall, eight autochthonous cases of WNV infection were identified between July and October 2023, six of which were WNND. All cases were male (median age, 73 years). Two of the cases were blood donors. All WNND cases were hospitalized and all recovered within a few weeks. Surveillance data showed that, in the Apulia region, WNV Lineage 2 was detected in humans, mosquitoes, and horses. Based on the number of WNND cases reported, we can assume that a high number of infections occurred during the summer period. Changes in the climate in the region over recent years could be considered among the main drivers of the rapid increase in WNV infections. Therefore, integrated surveillance should be strengthened to avoid the potential massive spread of WNV in Southern Italy. Moreover, the implementation of whole-genome sequencing of WNV strains, as well as seroepidemiological studies in the area, will facilitate a better understanding of circulation dynamics

    Wastewater-based Epidemiology and SARS-CoV-2: Variant Trends in the Apulia Region (Southern Italy) and Effect of Some Environmental Parameters

    No full text
    During the COVID-19 pandemic, wastewater monitoring has been used to monitor the levels of SARS-CoV-2 RNA entering the sewerage system. In Italy, the Istituto Superiore di Sanita coordinated the SARI project (Sorveglianza Ambientale Reflue in Italia) to detect SARS-CoV-2 and its variants. In this study, the concentration of SARS-CoV-2 and its variants in raw wastewater against COVID-19 cases was evaluated together with the effect of temperature and precipitation on virus spread. We validated a predictive model, proposed by De Giglio et al., 2021, to establish the number of COVID-19 cases/100,000 inhabitants. A receiver operating characteristic curve model was applied to predict the number of COVID-19 cases and Poisson regression was applied to study the effect of temperature and rainfall on viral load. In Apulia, from October 2021 to December 2022, we analyzed 1041 samples, of which 985 (94.6%) tested positive for SARS-CoV-2. Median atmospheric temperature was inversely proportional to viral load in wastewater; no correlation was found with precipitation. The predictive model confirmed that at least 11 cases/100,000 inhabitants would occur in the 15 days following the detection of the virus in wastewater. Environmental surveillance of SARS-CoV-2 can be used to map the virus and its variants

    Four-Component Recombinant Protein-Based Vaccine Effectiveness Against Serogroup B Meningococcal Disease in Italy

    No full text
    Importance: Population-based data on the 4-component recombinant protein-based (4CMenB) vaccine effectiveness and reduction in incidence rate ratios (IRRs) are continuously needed to assess vaccine performance in the prevention of serogroup B invasive meningococcal disease (IMD). Objective: To assess the effectiveness and reduction in IRRs associated with the 4CMenB vaccine in the pediatric population in 6 regions in Italy. Design, setting, and participants: This retrospective cohort screening study and case-control study included data from children aged younger than 6 years in 6 highly populated Italian regions from January 1, 2006, to January 1, 2020. Participants included children younger than 6 years diagnosed with serogroup B IMD without predisposing factors. Data were collected from regional surveillance and vaccination registries and were analyzed from September 2021 to January 2022. Exposures: Routine 4CMenB vaccination, per regional vaccination programs. Main outcomes and measures: The main outcome was the effectiveness of the 4CMenB vaccine in the prevention of serogroup B IMD in the population of children aged younger than 6 years in 6 Italian regions. The percentages of vaccine effectiveness (VE) were obtained through the concomitant use of a screening method and a case-control study. Secondary outcomes were the comparison of effectiveness results obtained using the 2 different computational methods, the description of serogroup B IMD incidence rates, and reduction in IRRs before and after 4CMenB introduction, as a proxy for vaccine impact. Results: The cohort screening study included a resident population of 587 561 children younger than 6 years in 3 regions with similar surveillance protocols, and the matched-case controls study assessed a resident population of 1 080 620 children younger than 6 years in 6 regions. Analyses found that 4CMenB VE in fully immunized children was 94.9% (95% CI, 83.1%-98.4%) using the screening method and 91.7% (95% CI, 24.4%-98.6%) using the case-control method. Overall reduction in IRR was 50%, reaching 70% in regions with early-start vaccination schedules. The case-control method involving 6 highly-populated Italian regions included 26 cases and 52 controls and found an estimated VE of 92.4% (95% CI, 67.6%-97.9%) in children old enough for the first vaccine dose and 95.6% (95% CI, 71.7%-99.1%) in fully immunized children. VE was more than 90% for partially immunized children. Even in regions where the first dose was administered at age 2 months, almost 20% of unvaccinated cases were among infants too young to receive the first 4CMenB dose. Conclusions and relevance: This screening cohort study and matched case-controls study found high effectiveness of 4CMenB vaccination and greater reduction in IRR for early-start vaccination schedules in preventing invasive serogroup B meningococcal disease. The high proportion of children too young to be vaccinated among unvaccinated cases suggests that starting the vaccination even earlier may prevent more cases. Screening and case-control methods provided similar estimates of VE: either method may be used in different study settings, but concomitant use can provide more robust estimates

    Tracking the Spread of the BA.2.86 Lineage in Italy Through Wastewater Analysis

    Get PDF
    : The emergence of new SARS-CoV-2 variants poses challenges to global surveillance efforts, necessitating swift actions in their detection, evaluation, and management. Among the most recent variants, Omicron BA.2.86 and its sub-lineages have gained attention due to their potential immune evasion properties. This study describes the development of a digital PCR assay for the rapid detection of BA.2.86 and its descendant lineages, in wastewater samples. By using this assay, we analyzed wastewater samples collected in Italy from September 2023 to January 2024. Our analysis revealed the presence of BA.2.86 lineages already in October 2023 with a minimal detection rate of 2% which then rapidly increased, becoming dominant by January 2024, accounting for a prevalence of 62%. The findings emphasize the significance of wastewater-based surveillance in tracking emerging variants and underscore the efficacy of targeted digital PCR assays for environmental monitoring

    Evaluation of Trends in Influenza A and B Viruses in Wastewater and Human Surveillance Data: Insights from the 2022–2023 Season in Italy

    Get PDF
    Wastewater-based epidemiology (WBE) is a recognized, dynamic approach to monitoring the transmission of pathogens in communities through urban wastewater. This study aimed to detect and quantify influenza A and B viruses in Italian wastewater during the 2022–2023 season (October 2022 to April 2023). A total of 298 wastewater samples were collected from 67 wastewater treatment plants (WTPs) across the country. These samples were analyzed for influenza A and B viruses (IAV, IBV) using primers originally developed by the Centers for Disease Control and Prevention (CDC) for real-time PCR and adapted for digital PCR. The overall detection rates of IAV and IBV across the entire study period were 19.1% and 16.8%, respectively. The prevalence of IAV in wastewater showed a gradual increase from October to December 2022, peaking at 61% in December. In contrast, IBV peaked at 36% in February 2023. This temporal discrepancy in peak concentrations suggests different seasonal patterns for the two influenza types. These trends mirrored human surveillance data, which showed influenza A cases peaking at 46% in late December and declining to around 2% by April 2023, and influenza B cases starting to increase significantly in January 2023 and peaking at about 14% in March. IAV concentrations ranged from 9.80 × 102 to 1.94 × 105 g.c./L, while IBV concentrations ranged from 1.07 × 103 to 1.43 × 104 g.c./L. Overall, the environmental data were consistent with the human surveillance trends observed during the study period in the country. These results demonstrate the value of WBE in tracking epidemiological patterns and highlight its potential as a complementary tool to infectious diseases surveillance systems

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    No full text

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    No full text
    Background: There are no Italian data regarding the strategies for preventing neonatal group B streptococcal (GBS) infection. We conducted a national survey in order to explore obstetrical, neonatal and microbiological practices for the GBS prevention. Methods: Three distinct questionnaires were sent to obstetricians, neonatologists and microbiologists. Questionnaires included data on prenatal GBS screening, maternal risk factors, intrapartum antibiotic prophylaxis, microbiological information concerning specimen processing and GBS antimicrobial susceptibility. Results: All respondent obstetrical units used the culture-based screening approach to identify women who should receive intrapartum antibiotic prophylaxis, and more than half of the microbiological laboratories (58%) reported using specimen processing consistent with CDC guidelines. Most neonatal units (89 out of 107, 82%) reported using protocols for preventing GBS early-onset sepsis consistent with CDC guidelines. Conclusions: The screening-based strategy is largely prevalent in Italy, and most protocols for preventing GBS early-onset sepsis are consistent with CDC guidelines. However, we found discrepancies in practices among centers that may reflect the lack of Italian guidelines issued by public health organizations
    corecore