763 research outputs found

    Software that Learns from its Own Failures

    Full text link
    All non-trivial software systems suffer from unanticipated production failures. However, those systems are passive with respect to failures and do not take advantage of them in order to improve their future behavior: they simply wait for them to happen and trigger hard-coded failure recovery strategies. Instead, I propose a new paradigm in which software systems learn from their own failures. By using an advanced monitoring system they have a constant awareness of their own state and health. They are designed in order to automatically explore alternative recovery strategies inferred from past successful and failed executions. Their recovery capabilities are assessed by self-injection of controlled failures; this process produces knowledge in prevision of future unanticipated failures

    Coming: a Tool for Mining Change Pattern Instances from Git Commits

    Full text link
    Software repositories such as Git have become a relevant source of information for software engineer researcher. For instance, the detection of Commits that fulfill a given criterion (e.g., bugfixing commits) is one of the most frequent tasks done to understand the software evolution. However, to our knowledge, there is not open-source tools that, given a Git repository, returns all the instances of a given change pattern. In this paper we present Coming, a tool that takes an input a Git repository and mines instances of change patterns on each commit. For that, Coming computes fine-grained changes between two consecutive revisions, analyzes those changes to detect if they correspond to an instance of a change pattern (specified by the user using XML), and finally, after analyzing all the commits, it presents a) the frequency of code changes and b) the instances found on each commit. We evaluate Coming on a set of 28 pairs of revisions from Defects4J, finding instances of change patterns that involve If conditions on 26 of them

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Test Case Purification for Improving Fault Localization

    Get PDF
    Finding and fixing bugs are time-consuming activities in software development. Spectrum-based fault localization aims to identify the faulty position in source code based on the execution trace of test cases. Failing test cases and their assertions form test oracles for the failing behavior of the system under analysis. In this paper, we propose a novel concept of spectrum driven test case purification for improving fault localization. The goal of test case purification is to separate existing test cases into small fractions (called purified test cases) and to enhance the test oracles to further localize faults. Combining with an original fault localization technique (e.g., Tarantula), test case purification results in better ranking the program statements. Our experiments on 1800 faults in six open-source Java programs show that test case purification can effectively improve existing fault localization techniques

    Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fixing

    Full text link
    This paper is about understanding the nature of bug fixing by analyzing thousands of bug fix transactions of software repositories. It then places this learned knowledge in the context of automated program repair. We give extensive empirical results on the nature of human bug fixes at a large scale and a fine granularity with abstract syntax tree differencing. We set up mathematical reasoning on the search space of automated repair and the time to navigate through it. By applying our method on 14 repositories of Java software and 89,993 versioning transactions, we show that not all probabilistic repair models are equivalent.Comment: Empirical Software Engineering (2013

    Explainable Software Bot Contributions: Case Study of Automated Bug Fixes

    Full text link
    In a software project, esp. in open-source, a contribution is a valuable piece of work made to the project: writing code, reporting bugs, translating, improving documentation, creating graphics, etc. We are now at the beginning of an exciting era where software bots will make contributions that are of similar nature than those by humans. Dry contributions, with no explanation, are often ignored or rejected, because the contribution is not understandable per se, because they are not put into a larger context, because they are not grounded on idioms shared by the core community of developers. We have been operating a program repair bot called Repairnator for 2 years and noticed the problem of "dry patches": a patch that does not say which bug it fixes, or that does not explain the effects of the patch on the system. We envision program repair systems that produce an "explainable bug fix": an integrated package of at least 1) a patch, 2) its explanation in natural or controlled language, and 3) a highlight of the behavioral difference with examples. In this paper, we generalize and suggest that software bot contributions must explainable, that they must be put into the context of the global software development conversation

    Empirical Evidence of Large-Scale Diversity in API Usage of Object-Oriented Software

    Get PDF
    In this paper, we study how object-oriented classes are used across thousands of software packages. We concentrate on "usage diversity'", defined as the different statically observable combinations of methods called on the same object. We present empirical evidence that there is a significant usage diversity for many classes. For instance, we observe in our dataset that Java's String is used in 2460 manners. We discuss the reasons of this observed diversity and the consequences on software engineering knowledge and research

    Reasoning and Improving on Software Resilience against Unanticipated Exceptions

    Get PDF
    In software, there are the errors anticipated at specification and design time, those encountered at development and testing time, and those that happen in production mode yet never anticipated. In this paper, we aim at reasoning on the ability of software to correctly handle unanticipated exceptions. We propose an algorithm, called short-circuit testing, which injects exceptions during test suite execution so as to simulate unanticipated errors. This algorithm collects data that is used as input for verifying two formal exception contracts that capture two resilience properties. Our evaluation on 9 test suites, with 78% line coverage in average, analyzes 241 executed catch blocks, shows that 101 of them expose resilience properties and that 84 can be transformed to be more resilient
    corecore