4,659 research outputs found

    Experimental Bell Inequality Violation with an Atom and a Photon

    Full text link
    We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.Comment: 4 pages, 2 figure

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Quantum harmonic oscillator state synthesis and analysis

    Full text link
    Experiments are described in which a single, harmonically bound, beryllium ion in a Paul trap is put into Fock, thermal, coherent, squeezed, and Schroedinger cat states. Experimental determinations of the density matrix and the Wigner function are described. A simple calculation of the decoherence of a superposition of coherent states due to an external electric field is given.Comment: 13 pages, LaTeX2e, special style file spie.sty included, 11 eps figures included using epsfig, graphicx, subfigure, floatflt macros. To appear in Proc. Conf. on Atom Optics, San Jose, CA, Feb. 1997, edited by M. G. Prentiss and W. D. Phillips, SPIE Proc. # 299

    Spatial Variation in the Rates of Unemployment in Ohio By County, January 1981-July 1982

    Get PDF
    Author Institution: Department of Geography, University of AkronSpatial patterns of unemployment by county in Ohio are analyzed using quarterly labor statistics from January 1981 to July 1982. A cluster analysis grouped the 88 counties into 3 primary regions, 2 secondary groups, and 3 outlier counties. Eighty of the counties lie in the 3 primary groups, which are characterized as low, average, and high unemployment areas in relation to the statewide trend in unemployment during this period. Counties in the low unemployment group have a diversified economy and are generally located in the central corridor of Ohio extending from Cincinnati to Cleveland. Counties in the high unemployment region are located primarily in southern Ohio and contain a rural population with a high level of poverty. The county unemployment rates are also correlated with the percentage of employment concentrated in the major economic sectors. The manufacturing and agricultural sectors show positive correlations to unemployment, whereas finance, insurance, and real estate (F.I.R.E.), services, and trade show strong negative correlation

    Simplified quantum logic with trapped ions

    Full text link
    We describe a simplified scheme for quantum logic with a collection of laser-cooled trapped atomic ions. Building on the scheme of Cirac and Zoller, we show how the fundamental controlled-NOT gate between a collective mode of ion motion and the internal states of a single ion can be reduced to a single laser pulse, and the need for a third auxiliary internal electronic state can be eliminated.Comment: 8 pages, PostScript, submitted to Physical Review A, Rapid Communication

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe
    corecore