1,546 research outputs found

    A Real-Time Millimeter-Wave Phased Array MIMO Channel Sounder

    Full text link
    In this paper, we present a novel real-time MIMO channel sounder for 28 GHz. Until now, the common practice to investigate the directional characteristics of millimeter-wave channels has been using a rotating horn antenna. The sounder presented here is capable of performing horizontal and vertical beam steering with the help of phased arrays. Thanks to fast beam-switching capability, the proposed sounder can perform measurements that are directionally resolved both at the transmitter (TX) and receiver (RX) as fast as 1.44 milliseconds compared to the minutes or even hours required for rotating horn antenna sounders. This does not only enable us to measure more points for better statistical inference but also allows to perform directional analysis in dynamic environments. Equally importantly, the short measurement time combined with the high phase stability of our setup limits the phase drift between TX and RX, enabling phase-coherent sounding of all beam pairs even when TX and RX are physically separated and have no cabled connection for synchronization. This ensures that the measurement data is suitable for high-resolution parameter extraction algorithms. Along with the system design and specifications, this paper also discusses the measurements performed for verification of the sounder. Furthermore, we present sample measurements from a channel sounding campaign performed on a residential street.Comment: 6 pages, 15 figures, conference pape

    Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    Full text link
    We report preparation in the ground state of collective modes of motion of two trapped 9Be+ ions. This is a crucial step towards realizing quantum logic gates which can entangle the ions' internal electronic states. We find that heating of the modes of relative ion motion is substantially suppressed relative to that of the center-of-mass modes, suggesting the importance of these modes in future experiments.Comment: 5 pages, including 3 figures. RevTeX. PDF and PostScript available at http://www.bldrdoc.gov/timefreq/ion/qucomp/papers.htm . final (published) version. Eq. 1 and Table 1 slightly different from original submissio

    Why are Some Engaged and Not Others? Explaining Environmental Engagement among Small Firms in Tourism

    Get PDF
    This paper examines the reasons for different levels of environmental engagement among small firms in tourism. Drawing on theories of motivation, notably Social Cognitive Theory, Motivation Systems Theory and Goal Orientation Theory, as well as the literature on environmental sensitivity, it proposes a novel conceptual framework that is subsequently used to inform an empirical study. The findings of the research suggest that varying levels of environmental engagement may be explained by differences in worldviews, self-efficacy beliefs, context beliefs and goal orientation. The paper concludes by considering the policy implications of the results. © 2011 John Wiley & Sons, Ltd

    A Quantum Scattering Interferometer

    Get PDF
    The collision of two ultra-cold atoms results in a quantum-mechanical superposition of two outcomes: each atom continues without scattering and each atom scatters as a spherically outgoing wave with an s-wave phase shift. The magnitude of the s-wave phase shift depends very sensitively on the interaction between the atoms. Quantum scattering and the underlying phase shifts are vitally important in many areas of contemporary atomic physics, including Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic clocks, and magnetically-tuned Feshbach resonances. Precise measurements of quantum scattering phase shifts have not been possible until now because, in scattering experiments, the number of scattered atoms depends on the s-wave phase shifts as well as the atomic density, which cannot be measured precisely. Here we demonstrate a fundamentally new type of scattering experiment that interferometrically detects the quantum scattering phase shifts of individual atoms. By performing an atomic clock measurement using only the scattered part of each atom, we directly and precisely measure the difference of the s-wave phase shifts for the two clock states in a density independent manner. Our method will give the most direct and precise measurements of ultracold atom-atom interactions and will place stringent limits on the time variations of fundamental constants.Comment: Corrected formatting and typo

    Global fits to neutrino oscillation data

    Get PDF
    I summarize the determination of neutrino oscillation parameters within the three-flavor framework from world neutrino oscillation data with date of May 2006, including the first results from the MINOS long-baseline experiment. It is illustrated how the determination of the leading "solar" and "atmospheric" parameters, as well as the bound on θ13\theta_{13} emerge from an interplay of various complementary data sets. Furthermore, I discuss possible implications of sub-leading three-flavor effects in present atmospheric neutrino data induced by Δm212\Delta m^2_{21} and θ13\theta_{13} for the bound on θ13\theta_{13} and non-maximal values of θ23\theta_{23}, emphasizing, however, that these effects are not statistically significant at present. Finally, in view of the upcoming MiniBooNE results I briefly comment on the problem to reconcile the LSND signal.Comment: 5 pages, 5 figures, talk presented at the SNOW2006 workshop, Stockholm, 2-6 May 200

    Acoustic Communication for Medical Nanorobots

    Full text link
    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates of about 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.Comment: added discussion of communication channel capacity in section
    corecore