408 research outputs found

    Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-α

    Get PDF
    Aims Advanced heart failure is often associated with reduced myocardial fatty acid oxidation capacity. We have previously observed that failing hearts of mice with overexpression of angiotensinogen in the myocardium exhibit marked reduction of key regulatory proteins of fatty acid oxidation. In the present study, we determined whether exposure of adult rat cardiac (ARC) myocytes to angiotensin II (Ang II) influences expression of fatty acid translocase, muscle-type carnitine palmitoyl transferase-I, and medium-chain acyl-CoA dehydrogenase. Methods and results Ang II reduced mRNA expression of the three regulatory proteins in ARC myocytes during the entire 14-days culture period. However, protein expression and palmitate oxidation rate remained unaltered for 7 days, but subsequently markedly decreased. The decrease of protein expression and of fatty acid oxidation coincided with the onset of increased protein expression of tumour necrosis factor-α (TNF-α). The effect of Ang II was completely abolished by either blocking TNF-α formation through inhibition of reactive oxygen species-mediated activation of nuclear factor-κB or by neutralizing TNF-α with a specific antibody. Activation of peroxisome proliferator-activated receptor-α (PPARα) and PPARβ/δ counteracted Ang II-mediated reduction of the fatty acid oxidation pathway. Conclusion Prolonged exposure of cardiac myocytes to Ang II elicits downregulation of the fatty acid oxidation pathway mediated by enhanced synthesis of TNF-

    Retinoic acids increase expression of GLUT4 in dedifferentiated and hypertrophied cardiac myocytes

    Get PDF
    Sufficient expression of the insulin-sensitive glucose transporter GLUT4 may be crucial for the survival of cardiac myocytes in situations of stress. Expression of GLUT4 in cardiac myocytes correlates with cell differentiation and is reduced in the hypertrophied and failing myocardium. Adult rat cardiomyocytes (ARC) in primary culture undergo dedifferentiation and reduction of GLUT4 expression. Depending on the culture condition partial redifferentiation and/or hypertrophy follows. All-trans (at) and 9-cis retinoic acids (RA) are morphogenetic agents important for cell differentiation. Both atRA and 9-cisRA restored GLUT4 expression in dedifferentiated ARC, while only 9-cisRA could increase GLUT4 expression in hypertrophic ARC. The effects of RA were associated with improved differentiation of the cardiac myocytes, as assessed from the expression of atrial natriuretic factor and the morphology of the contractile apparatus. In neonatal rat cardiomyocytes, 9-cisRA, but not atRA, stimulated transcription from the glut4 promoter. In conclusion, treatment with RA can restore the down-regulated expression of GLUT4 in cardiomyocytes in association with a partial improvement of the differentiated phenotyp

    Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism

    Get PDF
    Objectives: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. Methods: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. Results: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252±37 and +1093±279%, respectively, in the septum (P<0.05)] and of α-smooth muscle actin [+34±10 and +43±14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (−25±7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72±28 and +121±15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [−29±9 and −56±4%, respectively, in the peri-infarction region (P<0.05)]. Conclusion: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septu

    Inactivation of peroxisome proliferator-activated receptor isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes

    Get PDF
    Inactivation of peroxisome proliferator-activated receptor (PPARs) isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes. PPARs are ligand-activated transcription factors that modulate the transcriptional regulation of fatty acid metabolism and the hypertrophic response in neonatal cardiac myocytes. The purpose of this study was to determine the role of PPAR isoforms in the morphologic and metabolic phenotype transformation of adult cardiac myocytes in culture, which, in medium containing 20% fetal calf serum, undergo hypertrophy-like cell growth associated with downregulation of regulatory proteins of fatty acid metabolism. Expression and DNA-binding activity of PPARα, PPARβ/δ, and PPARγ rapidly decreased after cell isolation and remained persistently reduced during the 14-day culture period. Cells progressively increased in size and developed both re-expression of atrial natriuretic factor and downregulation of regulatory proteins of fatty acid metabolism. Supplementation of the medium with fatty acid (oleate 0.25mM/palmitate 0.25mM) prevented inactivation of PPARs and downregulation of metabolic genes. Furthermore, cell size and markers of hypertrophy were markedly reduced. Selective activation of either PPARα or PPARβ/δ completely restored expression of regulatory genes of fatty acid metabolism but did not influence cardiac myocyte size and markers of hypertrophy. Conversely, activation of PPARγ prevented cardiomyocyte hypertrophy but had no effect on fatty acid metabolism. The results indicate that PPAR activity markedly influences hypertrophic transformation of adult rat cardiac myocytes. Inactivation of PPARα and PPARβ/δ accounts for downregulation of the fatty acid oxidation pathway, whereas inactivation of PPARγ enables development of hypertroph

    Effects of insulin-like growth factor-I on the maturation of metabolism in neonatal rat cardiomyocytes

    Get PDF
    Myocardial metabolism shifts during the perinatal period from predominant utilization of glucose towards oxidation of fatty acids. Expression of enzymes of the fatty acid oxidation (FAO) pathway is under the control of the nuclear receptor/transcription factor peroxisome proliferator-activated receptor α (PPARα). Insulin-like Growth Factor-I (IGF-I) plays an important role in the post-natal growth and differentiation of the heart. We determined the influence of IGF-I on the maturation of myocardial metabolism. In neonatal rat cardiac myocytes, expression of the FAO enzymes MCAD and M-CPT I was induced by treatment with the specific PPARα agonist WY-14643. Concomitant treatment with IGF-I enhanced the expression of both FAO enzymes. By comparison, treatment with FGF-2, which is required for myocyte differentiation of cardiac precursors, did not increase WY-14643-induced expression of FAO enzymes. Despite stimulation of FAO enzyme expression, IGF-I did not further enhance WY-14643-stimulated palmitate oxidation. In contrast, IGF-I relieved WY-14643-mediated inhibition of glucose uptake and promoted storage of fatty acids into cellular neutral lipids. In conclusion, IGF-I promotes a more mature pattern of FAO gene expression but, because of insulin-like metabolic effects, does not concomitantly enhance oxidation of fatty acid

    Angiotensin II and tumour necrosis factor α as mediators of ATP-dependent potassium channel remodelling in post-infarction heart failure

    Get PDF
    Aims Angiotensin II (Ang II) and tumour necrosis factor α (TNFα) are involved in the progression from compensated hypertrophy to heart failure. Here, we test their role in the remodelling of ATP-dependent potassium channel (KATP) in heart failure, conferring increased metabolic and diazoxide sensitivity. Methods and results We observed increased expression of both angiotensinogen and TNFα in the failing rat myocardium, with a regional gradient matching that of the KATP subunit Kir6.1 expression. Both angiotensinogen and TNFα expression correlated positively with Kir6.1 and negatively with Kir6.2 expression across the post-infarction myocardium. To further identify a causal relationship, cardiomyocytes isolated from normal rat hearts were exposed in vitro to Ang II or TNFα. We observed increased Kir6.1 and SUR subunit and reduced Kir6.2 subunit mRNA expression in cardiomyocytes cultured with Ang II or TNFα, similar to what was observed in failing hearts. In patch-clamp experiments, cardiomyocytes cultured with Ang II or TNFα exhibited responsiveness to diazoxide, in terms of both KATP current and action potential shortening. This was not observed in untreated cardiomyocytes and resembles the diazoxide sensitivity of failing cardiomyocytes that also overexpress Kir6.1. Ang II exerted its effect through induction of TNFα expression, because TNFα-neutralizing antibody abolished the effect of Ang II, and in failing hearts, regional expression of angiotensinogen matched TNFα expression. Finally, Ang II and TNFα regulated KATP subunit expression, possibly through differential expression of Forkhead box transcription factors. Conclusion This study identifies Ang II and TNFα as mediators of the remodelling of KATP channels in heart failur

    Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4

    Get PDF
    Objective: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms modifying the expression of GLUT4 in cardiac myocytes. Results: Adult rat cardiomyocytes in primary culture exhibited spontaneous upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38 MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK activation on the glut4 promoter. Conclusion: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis, which is a strong inducer of GLUT4 expressio

    Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization

    Get PDF
    UNLABELLED: PHOSPHO1 is a phosphatase highly expressed in bone. We studied its functional involvement in mineralization through the use of novel small molecule inhibitors. PHOSPHO1 expression was present within matrix vesicles, and inhibition of enzyme action caused a decrease in the ability of matrix vesicles to calcify. INTRODUCTION: The novel phosphatase, PHOSPHO1, belongs to the haloacid dehalogenase superfamily of hydrolases and is capable of cleaving phosphoethanolamine (PEA) and phosphocholine to generate inorganic phosphate. Our aims in this study were to examine the expression of PHOSPHO1 in murine mineralizing cells and matrix vesicles (MV) and to screen a series of small-molecule PHOSPHO1-specific inhibitors for their ability to pharmacologically inhibit the first step of MV-mediated mineralization. MATERIALS AND METHODS: q-PCR and immunohistochemistry were used to study the expression and localization profiles of PHOSPHO1. Inhibitors of PHOSPHO1's PEA hydrolase activity were discovered using high-throughput screening of commercially available chemical libraries. To asses the efficacy of these inhibitors to inhibit MV mineralization, MVs were isolated from TNAP-deficient (Akp2(-/-)) osteoblasts and induced to calcify in their presence. RESULTS: q-PCR revealed a 120-fold higher level of PHOSPHO1 expression in bone compared with a range of soft tissues. The enzyme was immunolocalized to the early hypertrophic chondrocytes of the growth plate and to osteoblasts of trabecular surfaces and infilling primary osteons of cortical bone. Isolated MVs also contained PHOSPHO1. PEA hydrolase activity was observed in sonicated MVs from Akp2(-/-) osteoblasts but not intact MVs. Inhibitors to PHOSPHO1 were identified and characterized. Lansoprazole and SCH202676 inhibited the mineralization of MVs from Akp2(-/-) osteoblasts by 56.8% and 70.7%, respectively. CONCLUSIONS: The results show that PHOSPHO1 localization is restricted to mineralizing regions of bone and growth plate and that the enzyme present within MVs is in an active state, inhibition of which decreases the capacity of MVs to mineralize. These data further support our hypothesis that PHOSPHO1 plays a role in the initiation of matrix mineralization

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Mean flow modelling in high-order nonlinear Schr\"odinger equations

    Full text link
    The evaluation and consideration of the mean flow in wave evolution equations are necessary for the accurate prediction of fluid particle trajectories under wave groups, with relevant implications in several domains, from the transport of pollutants in the ocean, to the estimation of energy and momentum exchanges between the waves at small scales and the ocean circulation at large scale. We derive an expression of the mean flow at finite water depth which, in contrast to other approximations in the literature, accurately accords with the deep-water limit at third order in steepness, and is equivalent to second-order formulations in intermediate water. We also provide envelope evolution equations at fourth order in steepness for the propagation of unidirectional wave groups either in time or space that include the respective mean flow term. The latter, in particular, is required for accurately modelling experiments in water wave flumes in arbitrary depths.Comment: 25 pages, 9 figures, accepted for publication in Physics of Fluid
    corecore