2,106 research outputs found
On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within
In this chapter, we analyze the steady-state microscale fluid--structure
interaction (FSI) between a generalized Newtonian fluid and a hyperelastic
tube. Physiological flows, especially in hemodynamics, serve as primary
examples of such FSI phenomena. The small scale of the physical system renders
the flow field, under the power-law rheological model, amenable to a
closed-form solution using the lubrication approximation. On the other hand,
negligible shear stresses on the walls of a long vessel allow the structure to
be treated as a pressure vessel. The constitutive equation for the microtube is
prescribed via the strain energy functional for an incompressible, isotropic
Mooney--Rivlin material. We employ both the thin- and thick-walled formulations
of the pressure vessel theory, and derive the static relation between the
pressure load and the deformation of the structure. We harness the latter to
determine the flow rate--pressure drop relationship for non-Newtonian flow in
thin- and thick-walled soft hyperelastic microtubes. Through illustrative
examples, we discuss how a hyperelastic tube supports the same pressure load as
a linearly elastic tube with smaller deformation, thus requiring a higher
pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final
form of invited contribution to the Springer volume entitled "Dynamical
Processes in Generalized Continua and Structures" (in honour of Academician
D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov
and A. V. Porubo
Detection of metallic cobalt and chromium liver deposition following failed hip replacement using T2* and R2 magnetic resonance
BACKGROUND: Failed hip prostheses can cause elevated circulating cobalt and chromium levels, with rare reports of fatal systemic organ deposition, including cobalt cardiomyopathy. Although blood cobalt and chromium levels are easily measured, organ deposition is difficult to detect without invasive biopsy. The T2* magnetic resonance (MR) method is used to quantify tissue iron deposition, and plays an important role in the management of iron-loading conditions. Cobalt and chromium, like iron, also affect magnetism and are proposed MR contrast agents. CASE PRESENTATION: We describe a case of a 44-year-old male with a failed hip implant and very elevated blood cobalt and chromium levels. Despite normal cardiac MR findings, liver T2* and R2 values were abnormal, triggering tissue biopsy. Liver tissue analysis, including X-ray fluorescence, demonstrated heavy elemental cobalt and chromium deposition in macrophages, and no detectable iron. CONCLUSIONS: Our case demonstrates T2* and R2 quantification of liver metal deposition in a patient with a failed hip implant. Further work is needed to investigate the role of T2* and R2 MR in the detection of metal deposition from metal on metal hip prostheses
Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean
Background: Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone.
Methodology/Principal Findings: In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated.
Conclusions/Significance: Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups
The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling
Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods
Recommended from our members
Focus on stochastic flows and climate statistics
The atmosphere and ocean are examples of dynamical systems that evolve in accordance with the laws of physics. Therefore, climate science is a branch of physics that is just as valid and important as the more traditional branches, which include particle physics, condensed-matter physics, and statistical mechanics. This 'focus on' collection of New Journal of Physics brings together original research articles from leading groups that advance our understanding of the physics of climate. Areas of climate science that can particularly benefit from input by physicists are emphasised. The collection brings together articles on stochastic models, turbulence, quasi-linear approximations, climate statistics, statistical mechanics of atmospheres and oceans, jet formation, and reduced-form climate models. The hope is that the issue will encourage more physicists to think about the climate problem
Discourse or dialogue? Habermas, the Bakhtin Circle, and the question of concrete utterances
This is the author's accepted manuscript. The final publication is available at Springer via the link below.This article argues that the Bakhtin Circle presents a more realistic theory of concrete dialogue than the theory of discourse elaborated by Habermas. The Bakhtin Circle places speech within the “concrete whole utterance” and by this phrase they mean that the study of everyday language should be analyzed through the mediations of historical social systems such as capitalism. These mediations are also characterized by a determinate set of contradictions—the capital-labor contradiction in capitalism, for example—that are reproduced in unique ways in more concrete forms of life (the state, education, religion, culture, and so on). Utterances always dialectically refract these processes and as such are internal concrete moments, or concrete social forms, of them. Moreover, new and unrepeatable dialogic events arise in these concrete social forms in order to overcome and understand the constant dialectical flux of social life. But this theory of dialogue is different from that expounded by Habermas, who tends to explore speech acts by reproducing a dualism between repeatable and universal “abstract” discursive processes (commonly known as the ideal speech situation) and empirical uses of discourse. These critical points against Habermas are developed by focusing on six main areas: sentences and utterances; the lifeworld and background language; active versus passive understandings of language; validity claims; obligation and relevance in language; and dialectical universalism
Electrostatic charging of jumping droplets
With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet–surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.United States. Dept. of Energy. Office of Basic Energy Sciences (Solid-State Solar-Thermal Energy Conversion Center Award DE-FG02-09ER46577)United States. Office of Naval ResearchNational Science Foundation (U.S.) (Major Research Instrumentation Grant for Rapid Response Research (MRI- RAPID))National Science Foundation (U.S.) (Award ECS-0335765)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374
Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects
We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation
in phase space. We demonstrate that it accommodates the phase space
dynamics of low dimensional dissipative systems such as the much studied Lorenz
and R\"{o}ssler Strange attractors, as well as the more recent constructions of
Chen and Leipnik-Newton. The rotational, volume preserving part of the flow
preserves in time a family of two intersecting surfaces, the so called {\em
Nambu Hamiltonians}. They foliate the entire phase space and are, in turn,
deformed in time by Dissipation which represents their irrotational part of the
flow. It is given by the gradient of a scalar function and is responsible for
the emergence of the Strange Attractors.
Based on our recent work on Quantum Nambu Mechanics, we provide an explicit
quantization of the Lorenz attractor through the introduction of
Non-commutative phase space coordinates as Hermitian matrices in
. They satisfy the commutation relations induced by one of the two
Nambu Hamiltonians, the second one generating a unique time evolution.
Dissipation is incorporated quantum mechanically in a self-consistent way
having the correct classical limit without the introduction of external degrees
of freedom. Due to its volume phase space contraction it violates the quantum
commutation relations. We demonstrate that the Heisenberg-Nambu evolution
equations for the Quantum Lorenz system give rise to an attracting ellipsoid in
the dimensional phase space.Comment: 35 pages, 4 figures, LaTe
Development of a 3D workspace Shoulder Assessment Tool Incorporating Electromyography and an Inertial Measurement Unit - A preliminary study
Traditional shoulder Range of Movement (ROM) measurement tools suffer from inaccuracy or from long experimental set-up times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems.
The aim of this study is to develop and evaluate a single IMU combined with an Electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a ‘frozen’ shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically.
The results showed that there was an average ROM surface area of 27291±538 deg2 among all six healthy individuals and a ROM surface area of 13571±308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles.
Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
