730 research outputs found
Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53
Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets.
Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region.
Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes
Improving the delivery of care for patients with diabetes through understanding optimised team work and organisation in primary care
Peer reviewedPublisher PD
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered
Heart Fields: Spatial Polarity and Temporal Dynamics
In chick and mouse, heart fields undergo dynamic morphological spatiotemporal changes during heart tube formation. Here, the dynamic change in spatial polarity of such fields is discussed and a new perspective on the heart fields is proposed. The heart progenitor cells delaminate through the primitive streak and migrate in a semicircular trajectory craniolaterally forming the bilateral heart fields as part of the splanchnic mesoderm. They switch their polarity from anteroposterior to mediolateral. The anterior intestinal portal posterior descent inverts the newly formed heart field mediolateral polarity into lateromedial by 125° bending. The heart fields revert back to their original anteroposterior polarity and fuse at the midline forming a semi heart tube by completing their half circle movement. Several names and roles were assigned to different portions of the heart fields: posterior versus anterior, first versus second, and primary versus secondary heart field. The posterior and anterior heart fields define basically physical fields that form the inflow–outflow axis of the heart tube. The first and second heart fields are, in contrast, temporal fields of differentiating cardiomyocytes expressing myosin light chain 2a and undifferentiated and proliferating precardiac mesoderm expressing Isl1 gene, respectively. The two markers present a complementary pattern and are expressed transiently in all myocardial lineages. Thus, Isl1 is not restricted to a portion of the heart field or one of the two heart lineages as has been often assumed. Anat Rec, 297:175–182, 2014. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102627/1/ar22831.pd
Recommended from our members
Farmer attitudes and livestock disease: exploring citizenship behaviour and peer monitoring across two BVD control schemes in the UK
The eradication of BVD in the UK is technically possible but appears to be socially untenable. The following study explored farmer attitudes to BVD control schemes in relation to advice networks and information sharing, shared aims and goals, motivation and benefits of membership, notions of BVD as a priority disease and attitudes toward regulation. Two concepts from the organisational management literature framed the study: citizenship behaviour where actions of individuals support the collective good (but are not explicitly recognised as such) and peer to peer monitoring (where individuals evaluate other’s behaviour). Farmers from two BVD control schemes in the UK participated in the study: Orkney Livestock Association BVD Eradication Scheme and Norfolk and Suffolk Cattle Breeders Association BVD Eradication Scheme. In total 162 farmers participated in the research (109 in-scheme and 53 out of scheme). The findings revealed that group helping and information sharing among scheme members was low with a positive BVD status subject to social censure. Peer monitoring in the form of gossip with regard to the animal health status of other farms was high. Interestingly, farmers across both schemes supported greater regulation with regard to animal health, largely due to the mistrust of fellow farmers following voluntary disease control measures. While group cohesiveness varied across the two schemes, without continued financial inducements, longer-term sustainability is questionabl
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukemia
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2DBCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.This work was supported in part by
the American Lebanese Syrian Associated Charities of St. Jude Children’s Research
Hospital; by a Stand Up to Cancer Innovative Research Grant and St. Baldrick’s
Foundation Scholar Award (to C.G.M.); by a St. Baldrick’s Consortium Award (S.P.H.),
by a Leukemia and Lymphoma Society Specialized Center of Research grant (S.P.H. and
C.G.M.), by a Lady Tata Memorial Trust Award (I.I.), by a Leukemia and Lymphoma
Society Special Fellow Award and Alex’s Lemonade Stand Foundation Young Investigator
Awards (K.R.), by an Alex’s Lemonade Stand Foundation Award (M.L.) and by
National Cancer Institute Grants CA21765 (St Jude Cancer Center Support Grant), U01
CA157937 (C.L.W. and S.P.H.), U24 CA114737 (to Dr Gastier-Foster), NCI Contract
HHSN261200800001E (to Dr Gastier-Foster), U10 CA180820 (ECOG-ACRIN
Operations) and CA180827 (E.P.); U10 CA180861 (C.D.B. and G.M.); U24 CA196171
(The Alliance NCTN Biorepository and Biospecimen Resource); CA145707 (C.L.W. and
C.G.M.); and grants to the COG: U10 CA98543 (Chair’s grant and supplement to
support the COG ALL TARGET project), U10 CA98413 (Statistical Center) and U24
CA114766 (Specimen Banking). This project has been funded in whole or in part with
Federal funds from the National Cancer Institute, National Institutes of Health, under
Contract Number HHSN261200800001E
A Cis-Regulatory Map of the Drosophila Genome
Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide1, 2 has successfully identified specific subtypes of regulatory elements3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements4, chromatin states5, transcription factor binding sites6, 7, 8, 9, RNA polymerase II regulation8 and insulator elements10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships
Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study
Occupancy maps of 208 chromatin-associated proteins in one human cell type
Transcription factors are DNA-binding proteins that have key roles in gene regulation. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium
Medical Therapies for Uterine Fibroids - A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials
BACKGROUND: Uterine fibroids are common, often symptomatic and a third of women need repeated time off work. Consequently 25% to 50% of women with fibroids receive surgical treatment, namely myomectomy or hysterectomy. Hysterectomy is the definitive treatment as fibroids are hormone dependent and frequently recurrent. Medical treatment aims to control symptoms in order to replace or delay surgery. This may improve the outcome of surgery and prevent recurrence. PURPOSE: To determine whether any medical treatment can be recommended in the treatment of women with fibroids about to undergo surgery and in those for whom surgery is not planned based on currently available evidence. STUDY SELECTION: Two authors independently identified randomised controlled trials (RCT) of all pharmacological treatments aimed at the treatment of fibroids from a list of references obtained by formal search of MEDLINE, EMBASE, Cochrane library, Science Citation Index, and ClinicalTrials.gov until December 2013. DATA EXTRACTION: Two authors independently extracted data from identified studies. DATA SYNTHESIS: A Bayesian network meta-analysis was performed following the National Institute for Health and Care Excellence-Decision Support Unit guidelines. Odds ratios, rate ratios, or mean differences with 95% credible intervals (CrI) were calculated. RESULTS AND LIMITATIONS: A total of 75 RCT met the inclusion criteria, 47 of which were included in the network meta-analysis. The overall quality of evidence was very low. The network meta-analysis showed differing results for different outcomes. CONCLUSIONS: There is currently insufficient evidence to recommend any medical treatment in the management of fibroids. Certain treatments have future promise however further, well designed RCTs are needed
- …
