33 research outputs found
Determining realistic electrochemical stability windows of electrolytes for electrical double layer capacitors
Electrical double-layer capacitors are a key building block for energy storage applications, including renewable energies, wherever high power is needed. Most research on electrolytes in this field focuses on improving their electrochemical stability. This improves the energy density as it scales with the square of the maximum operative voltage. However, the decisive criteria to assess the electrochemical stability window of electrolytes are unclear. Consequently, new electrolyte candidates are often presented with unrealistic high stability windows and their performance is difficult to compare. In this Minireview, an overview of electrochemical stability window determination methods is presented. It is argued that constant voltage lifetime tests are needed to confirm the electrochemical stability window determined by any other method. Also, the importance of using realistic working electrodes, reference electrodes, and cycling protocols are highlighted. Finally, an industrial perspective on what is necessary to yield results relevant to applications is given
Poly[diacetonitrile[μ3-difluoro(oxalato)borato]sodium]
The title compound, [Na(C2BF2O4)(CH3CN)2]n, forms infinite two-dimensional layers running parallel to (010). The layers lie across crystallographic mirror planes at y = 1/4 and 3/4. The Na, B and two F atoms reside on these mirror planes. The Na+ cations are six-coordinate. Two equatorial coordination positions are occupied by acetonitrile molecules. The other two equatorial coordination sites are occupied by the chelating O atoms from the difluoro(oxalato)borate anion (DFOB−). The axial coordination sites are occupied by two F atoms from two different DFOB− anions
Thrombosis in vasculitis: from pathogenesis to treatment
In recent years, the relationship between inflammation and thrombosis has been deeply investigated and it is now clear that immune and coagulation systems are functionally interconnected. Inflammation-induced thrombosis is by now considered a feature not only of autoimmune rheumatic diseases, but also of systemic vasculitides such as Behçet’s syndrome, ANCA-associated vasculitis or giant cells arteritis, especially during active disease. These findings have important consequences in terms of management and treatment. Indeed, Behçet’syndrome requires immunosuppressive agents for vascular involvement rather than anticoagulation or antiplatelet therapy, and it is conceivable that also in ANCA-associated vasculitis or large vessel-vasculitis an aggressive anti-inflammatory treatment during active disease could reduce the risk of thrombotic events in early stages. In this review we discuss thrombosis in vasculitides, especially in Behçet’s syndrome, ANCA-associated vasculitis and large-vessel vasculitis, and provide pathogenetic and clinical clues for the different specialists involved in the care of these patients
Eosinophils in glioblastoma biology
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review
An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma
PURPOSE: A topical Toll-like receptor 7 (TLR7) agonist induces regression of cutaneous melanocytic neoplasms. We explored antitumor activity of a systemically administered TLR7 agonist, 852A, in patients with metastatic melanoma. EXPERIMENTAL DESIGN: We undertook a phase II, multicenter, open-label study in patients with chemotherapy-refractory metastatic melanoma. Patients received i.v. 852A, starting at 0.6 mg/m(2) and increasing to 0.9 mg/m(2) based on tolerance, thrice per week for 12 weeks. Clinical response was determined by Response Evaluation Criteria in Solid Tumors. Immune effects of 852A were monitored by measuring serum type I IFN and IP-10 together with assessment of immune cell markers in peripheral blood. RESULTS: Twenty-one patients were enrolled. Thirteen patients completed the initial 12-week treatment cycle, with two discontinuing for adverse events considered to be possibly related to study drug. Four (19%) patients had disease stabilization for >100 days. One patient had a partial remission after two treatment cycles, but progressed during the third. Dose-limiting toxicity was observed in two patients. Serum type I IFN and IP-10 increased in most patients on 852A administration. Serum type I IFN increases were greater after dosing with 852A 0.9 mg/m(2) than after 0.6 mg/m(2) (P = 0.009). The maximal increase in IP-10 compared with baseline correlated with the maximal increase in type I IFN (P = 0.003). In the eight patients with immune cell marker data, CD86 expression on monocytes increased significantly post-first dose (P = 0.007). CONCLUSION: Intravenous 852A was well tolerated and induced systemic immune activation that eventually resulted in prolonged disease stabilization in some patients with stage IV metastatic melanoma who had failed chemotherapy
Ga-68-PSMA-PET/CT bei Prostatakarzinom
Prostate-specific membrane antigen (PSMA) is expressed as a cell surface protein physiologically in the prostate and can be found in all stages of prostate cancer. Even in castration-resistant prostate cancers, this overexpression of PSMA occurs. Due to the enzymatic activity of PSMA it was possible develop specific inhibitors from which "small molecule" radiopharmaceuticals were derived. By coupling the specific binding motif glutamate-urea-lysine with the chelator HBED-CC, which complexes Ga-68 very effectively, a new radiopharmaceutical is available for Ga-68-PSMA-PET/CT. According to the first results in patients with prostate carcinoma, this new diagnostic tool exhibited advantages in image quality compared to choline-PET/CT. An initial study demonstrated the higher contrast of the PET signal and an improved diagnostic accuracy. The properties of even further new PSMA PET radiopharmaceuticals can be of increasing importance for the diagnostic work-up of prostate cancer in all stages. In conjunction with therapeutic PSMA radiopharmaceuticals, a new field of theragnostics is opened
Effects of Chromate and Molybdate Ions on Scratch Repassivation Behavior of Precipitation Hardened Aluminum Alloys
Scratch depassivation of AA2024-T351, AA7075-T6, and 99.999% aluminum in molybdate (MoO4
2-) and chromate (CrO4
2-) containing NaCl solutions was used to examine electrochemical repassivation kinetics over a range of potentials and inhibitor concentrations. Single frequency impedance measurements were taken in the capacitive region of frequency response. Capacitance measurements enabled the observation of the effects of inhibitor additions on oxide growth as protective oxide films formed on the scratched electrode surface. Chromate was found to suppress scratched electrode current transients at high potentials on both AA2024-T351 and AA7075-T6. Capacitance measurements revealed the rapid growth of a thick, protective oxide when concentrations as low 5 mM CrO4
2-E were in solution. Molybdate did not suppress transient current density in AA2024-T351 or AA7075-T6. In some cases the addition of molybdate increased the total charge passed after the scratch. However, capacitance measurements in the presence of molybdate indicate the rapid growth of a passive film.</jats:p
