453 research outputs found
Evolution of surname distribution under gender-equality measurements
We consider a model for the evolution of the surnames distribution under a
gender-equality measurement presently discussed in the Spanish parliament (the
children take the surname of the father or the mother according to alphabetical
order). We quantify how this would bias the alphabetical distribution of
surnames, and analyze its effect on the present distribution of the surnames in
Spain
A q-deformed nonlinear map
A scheme of q-deformation of nonlinear maps is introduced. As a specific
example, a q-deformation procedure related to the Tsallis q-exponential
function is applied to the logistic map. Compared to the canonical logistic
map, the resulting family of q-logistic maps is shown to have a wider spectrum
of interesting behaviours, including the co-existence of attractors -- a
phenomenon rare in one dimensional maps.Comment: 17 pages, 19 figure
Are there gender differences in the geography of alcohol-related mortality in Scotland? An ecological study
<b>Background</b>
There is growing concern about alcohol-related harm, particularly within Scotland which has some of the highest rates of alcohol-related death in western Europe. There are large gender differences in alcohol-related mortality rates in Scotland and in other countries, but the reasons for these differences are not clearly understood. In this paper, we aimed to address calls in the literature for further research on gender differences in the causes, contexts and consequences of alcohol-related harm. Our primary research question was whether the kind of social environment which tends to produce higher or lower rates of alcohol-related mortality is the same for both men and women across Scotland.
<b>Methods</b>
Cross-sectional, ecological design. A comparison was made between spatial variation in men's and women's age-standardised alcohol-related mortality rates in Scotland using maps, Moran's Index, linear regression and spatial analyses of residuals. Directly standardised mortality rates were derived from individual level records of death registration, 2000–2005 (n = 8685).
<b>Results</b>
As expected, men's alcohol-related mortality rate substantially exceeded women's and there was substantial spatial variation in these rates for both men and women within Scotland. However, there was little spatial variation in the relationship between men's and women's alcohol-mortality rates (r2 = 0.73); areas with relatively high rates of alcohol-related mortality for men tended also to have relatively high rates for women. In a small number of areas (8 out of 144) the relationship between men's and women's alcohol-related mortality rates was significantly different.
<b>Conclusion</b>
In as far as geographic location captures exposure to social and economic environment, our results suggest that the relationship between social and economic environment and alcohol-related harm is very similar for men and women. The existence of a small number of areas in which men's and women's alcohol-related mortality had an different relationship suggests that some places may have unusual drinking cultures. These might prove useful for further investigations into the factors which influence drinking behaviour in men and women
Bacterial microevolution and the Pangenome
The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history
Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution
A birth-death process is a continuous-time Markov chain that counts the
number of particles in a system over time. In the general process with
current particles, a new particle is born with instantaneous rate
and a particle dies with instantaneous rate . Currently no robust and
efficient method exists to evaluate the finite-time transition probabilities in
a general birth-death process with arbitrary birth and death rates. In this
paper, we first revisit the theory of continued fractions to obtain expressions
for the Laplace transforms of these transition probabilities and make explicit
an important derivation connecting transition probabilities and continued
fractions. We then develop an efficient algorithm for computing these
probabilities that analyzes the error associated with approximations in the
method. We demonstrate that this error-controlled method agrees with known
solutions and outperforms previous approaches to computing these probabilities.
Finally, we apply our novel method to several important problems in ecology,
evolution, and genetics
Evolutionary Games with Affine Fitness Functions: Applications to Cancer
We analyze the dynamics of evolutionary games in which fitness is defined as
an affine function of the expected payoff and a constant contribution. The
resulting inhomogeneous replicator equation has an homogeneous equivalent with
modified payoffs. The affine terms also influence the stochastic dynamics of a
two-strategy Moran model of a finite population. We then apply the affine
fitness function in a model for tumor-normal cell interactions to determine
which are the most successful tumor strategies. In order to analyze the
dynamics of concurrent strategies within a tumor population, we extend the
model to a three-strategy game involving distinct tumor cell types as well as
normal cells. In this model, interaction with normal cells, in combination with
an increased constant fitness, is the most effective way of establishing a
population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com,
http://dx.doi.org/10.1007/s13235-011-0029-
Emergence of Cooperation and Evolutionary Stability in Finite Populations
To explain the evolution of cooperation by natural selection has been a major goal of biologists since Darwin. Cooperators help others at a cost to themselves, while defectors receive the benefits of altruism without providing any help in return. The standard game dynamical formulation is the 'Prisoner's Dilemma', in which two players have a choice between cooperation and defection. In the repeated game, cooperators using direct reciprocity cannot be exploited by defectors, but it is unclear how such cooperators can arise in the first place. In general, defectors are stable against invasion by cooperators. This understanding is based on traditional concepts of evolutionary stability and dynamics in infinite populations. Here we study evolutionary game dynamics in finite populations. We show that a single cooperator using a strategy like 'tit-for-tat' can invade a population of defectors with a probability that corresponds to a net selective advantage. We specify the conditions required for natural selection to favour the emergence of cooperation and define evolutionary stability in finite populations.Organismic and Evolutionary BiologyEconomicsMathematic
Slower recovery in space before collapse of connected populations
Slower recovery from perturbations near a tipping point and its indirect signatures in fluctuation patterns have been suggested to foreshadow catastrophes in a wide variety of systems. Recent studies of populations in the field and in the laboratory have used time-series data to confirm some of the theoretically predicted early warning indicators, such as an increase in recovery time or in the size and timescale of fluctuations. However, the predictive power of temporal warning signals is limited by the demand for long-term observations. Large-scale spatial data are more accessible, but the performance of warning signals in spatially extended systems needs to be examined empirically. Here we use spatially extended yeast populations, an experimental system with a fold bifurcation (tipping point), to evaluate early warning signals based on spatio-temporal fluctuations and to identify a novel spatial warning indicator. We found that two leading indicators based on fluctuations increased before collapse of connected populations; however, the magnitudes of the increases were smaller than those observed in isolated populations, possibly because local variation is reduced by dispersal. Furthermore, we propose a generic indicator based on deterministic spatial patterns, which we call ‘recovery length’. As the spatial counterpart of recovery time, recovery length is the distance necessary for connected populations to recover from spatial perturbations. In our experiments, recovery length increased substantially before population collapse, suggesting that the spatial scale of recovery can provide a superior warning signal before tipping points in spatially extended systems.United States. National Institutes of Health (NIH R00 GM085279-02)United States. National Institutes of Health (NIH DP2)Alfred P. Sloan FoundationNational Science Foundation (U.S.
Geographic Coincidence of Increased Malaria Transmission Hazard and Vulnerability Occurring at the Periphery of two Tanzanian Villages.
The goal of malaria elimination necessitates an improved understanding of any fine-scale geographic variations in transmission risk so that complementary vector control tools can be integrated into current vector control programmes as supplementary measures that are spatially targeted to maximize impact upon residual transmission. This study examines the distribution of host-seeking malaria vectors at households within two villages in rural Tanzania. Host-seeking mosquitoes were sampled from 72 randomly selected households in two villages on a monthly basis throughout 2008 using CDC light-traps placed beside occupied nets. Spatial autocorrelation in the dataset was examined using the Moran's I statistic and the location of any clusters was identified using the Getis-Ord Gi* statistic. Statistical associations between the household characteristics and clusters of mosquitoes were assessed using a generalized linear model for each species. For both Anopheles gambiae sensu lato and Anopheles funestus, the density of host-seeking females was spatially autocorrelated, or clustered. For both species, houses with low densities were clustered in the semi-urban village centre while houses with high densities were clustered in the periphery of the villages. Clusters of houses with low or high densities of An. gambiae s.l. were influenced by the number of residents in nearby houses. The occurrence of high-density clusters of An. gambiae s.l. was associated with lower elevations while An. funestus was also associated with higher elevations. Distance from the village centre was also positively correlated with the number of household occupants and having houses constructed with open eaves. The results of the current study highlight that complementary vector control tools could be most effectively targeted to the periphery of villages where the households potentially have a higher hazard (mosquito densities) and vulnerability (open eaves and larger households) to malaria infection
On the Polynomial Measurement Error Model
This paper discusses point estimation of the coefficients of polynomial measurement error (errors-in-variables) models. This includes functional and structural models. The connection between these models and total least squares (TLS) is also examined. A compendium of existing as well as new results is presented
- …
