9,590 research outputs found

    3D-melting features of the irreversibility line in overdoped Bi2_2Sr2_2CuO6_6 at ultra-low temperature and high magnetic field

    Full text link
    We have measured the irreversible magnetization of an overdoped Bi2_2Sr2_2CuO6_6 single crystal up to B=28 T and down to T=60 mK, and extracted the irreversibility line Birr(T)B_{\rm irr}(T): the data can be interpreted in the whole temperature range as a 3D-anisotropic vortex lattice melting line with Lindemann number cL=0.13c_{\rm L}=0.13. We also briefly discuss the applicability of alternative models such as 2D- and quantum melting, and the connection with magnetoresistance experiments.Comment: M2S-HTSC-VI Conference paper (2 pages, 1 figure), using Elsevier style espcrc2.st

    Rescattering effects in B_{u,d,s}(bar) to D P, D(bar) P decays

    Full text link
    We study quasi-elastic rescattering effects in B_{u,d,s}(bar) to DP, D(bar)P decays, where P is a light pseudoscalar. The updated measurements of B_{u,d}(bar) to DP decays are used to extract the effective Wilson coefficients a^{eff}_1 ~ 0.90, a^{eff}_2 ~ 0.23, three strong phases delta ~ 53 degree, theta ~ 18 degree, sigma ~ -88 degree, and the mixing angle tau ~ 9 degree. This information is used to predict rates of nineteen B_{s}(bar) to DP and B_{u,d,s}(bar) to D(bar)P decay modes, including modes of interests in the gamma/phi_3 program. Many decay rates are found to be enhanced. In particular, the B_s(bar) to D0 K0 rate is predicted to be 8\times 10^{-4}, which could be measured soon. The rescattering effects on the corresponding B_{u,d,s}(bar) to D(bar)P, DP amplitude ratios r_B, r_{B_s}, and the relative strong phases delta_B, delta_{B_s} are studied. Although the decay rates are enhanced in most cases, r_{B,B_s} values are similar to factorization expectation.Comment: 16 page

    Review of operational aspects of initial experiments utilizing the U.S. MLS

    Get PDF
    An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear

    A Flight Evaluation of a VTOL Jet Transport Under Visual and Simulated Instrument Conditions

    Get PDF
    Transition, approach, and vertical landing tests for VTOL transport in terminal are

    Observation of the single-electron regime in a highly tunable silicon quantum dot

    Full text link
    We report on low-temperature electronic transport measurements of a silicon metal-oxide-semiconductor quantum dot, with independent gate control of electron densities in the leads and the quantum dot island. This architecture allows the dot energy levels to be probed without affecting the electron density in the leads, and vice versa. Appropriate gate biasing enables the dot occupancy to be reduced to the single-electron level, as evidenced by magnetospectroscopy measurements of the ground state of the first two charge transitions. Independent gate control of the electron reservoirs also enables discrimination between excited states of the dot and density of states modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter

    Pneumatic press equipped with the Vortex system for white grapes processing: First results

    Get PDF
    The interaction between mechanical, computer and electronic technologies offers nowadays highly innovative solutions to be applied to the oenological machinery industry. Grapes pressing for the extraction of must from the grapes has a fundamental role for obtaining wines with high quality. The pneumatic presses commonly used work with a discontinuous cycle, taking on average about 3 hours for the extraction of the juice from the grapes. During this period, the presence of oxygen in contact with grapes can modify the qualitative characteristics of the future wine. The aim of the research was to study the \u201cVortex System\u201d applied to a pneumatic press and to evaluate the quality of wines obtained in reduction. The study was carried out in a modern winery in the province of Palermo (Italy) using cv. Catarratto lucido grapes. The machine used in the tests was a pneumatic press with a capacity of 1,900 / 2,500 kg by Puleo Srl company (Italy), equipped with the patent "Vortex System". It consists in the recovery of the inert gas by means of a passage and recirculation apparatus during grapes pressing allowing the must extraction in inert and controlled atmosphere, the non-oxidation of the product and a re-use of the gaseous component. Two operating modes were applied: AP (Air Pressing) mode, the traditional pressing mode in presence of oxygen, and NP (Nitrogen Pressing) mode with the Vortex System, performed under inert gas with nitrogen recovery. The following analytical determinations were performed on wines in triplicates: alcohol [%/vol], density [g/l], sugar [g/l], pH, total acidity [g/l], volatile acidity [g/l], malic acid [g/l], citric acid [g/l], tartaric acid [g/l], potassium [g/l], glycerin [g/l], ashes [g/l], absorbance at 420, 520 and 620 nm, polyphenols [mg/l], catechins [mg/l], free sulfur dioxide [mg/l], total sulfur dioxide [mg/l]. The use of the pneumatic press equipped with the Vortex System allowed to obtain excellent values of volatile acidity, absorbance at 420 nm, catechins in white wines and a rich aromatic component both in primary and secondary aromas

    A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b

    Get PDF
    The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently one of the most widely used instruments for observing exoplanetary atmospheres, especially with the use of the spatial scanning technique. An increasing number of exoplanets have been studied using this technique as it enables the observation of bright targets without saturating the sensitive detectors. In this work we present a new pipeline for analyzing the data obtained with the spatial scanning technique, starting from the raw data provided by the instrument. In addition to commonly used correction techniques, we take into account the geometric distortions of the instrument, whose impact may become important when combined to the scanning process. Our approach can improve the photometric precision for existing data and also push further the limits of the spatial scanning technique, as it allows the analysis of even longer spatial scans. As an application of our method and pipeline, we present the results from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We calculate the transit depth per wavelength channel with an average relative uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully Bayesian spectral retrieval code, which confirms the presence of water vapor and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits our ability to disentangle the degeneracies between the fitted atmospheric parameters. Additional data over a broader spectral range are needed to address this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap

    Detection of an atmosphere around the super-Earth 55 Cancri e

    Get PDF
    We report the analysis of two new spectroscopic observations of the super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera onboard the HST. 55 Cancri e orbits so close to its parent star, that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6σ\sigma confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μ\mum. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.Comment: 10 pages, 10 figures, 4 tables, Accepted for publication in Ap
    corecore