9,590 research outputs found
3D-melting features of the irreversibility line in overdoped BiSrCuO at ultra-low temperature and high magnetic field
We have measured the irreversible magnetization of an overdoped
BiSrCuO single crystal up to B=28 T and down to T=60 mK, and
extracted the irreversibility line : the data can be
interpreted in the whole temperature range as a 3D-anisotropic vortex lattice
melting line with Lindemann number . We also briefly discuss
the applicability of alternative models such as 2D- and quantum melting, and
the connection with magnetoresistance experiments.Comment: M2S-HTSC-VI Conference paper (2 pages, 1 figure), using Elsevier
style espcrc2.st
Rescattering effects in B_{u,d,s}(bar) to D P, D(bar) P decays
We study quasi-elastic rescattering effects in B_{u,d,s}(bar) to DP, D(bar)P
decays, where P is a light pseudoscalar. The updated measurements of
B_{u,d}(bar) to DP decays are used to extract the effective Wilson coefficients
a^{eff}_1 ~ 0.90, a^{eff}_2 ~ 0.23, three strong phases delta ~ 53 degree,
theta ~ 18 degree, sigma ~ -88 degree, and the mixing angle tau ~ 9 degree.
This information is used to predict rates of nineteen B_{s}(bar) to DP and
B_{u,d,s}(bar) to D(bar)P decay modes, including modes of interests in the
gamma/phi_3 program. Many decay rates are found to be enhanced. In particular,
the B_s(bar) to D0 K0 rate is predicted to be 8\times 10^{-4}, which could be
measured soon. The rescattering effects on the corresponding B_{u,d,s}(bar) to
D(bar)P, DP amplitude ratios r_B, r_{B_s}, and the relative strong phases
delta_B, delta_{B_s} are studied. Although the decay rates are enhanced in most
cases, r_{B,B_s} values are similar to factorization expectation.Comment: 16 page
Review of operational aspects of initial experiments utilizing the U.S. MLS
An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear
A Flight Evaluation of a VTOL Jet Transport Under Visual and Simulated Instrument Conditions
Transition, approach, and vertical landing tests for VTOL transport in terminal are
Observation of the single-electron regime in a highly tunable silicon quantum dot
We report on low-temperature electronic transport measurements of a silicon
metal-oxide-semiconductor quantum dot, with independent gate control of
electron densities in the leads and the quantum dot island. This architecture
allows the dot energy levels to be probed without affecting the electron
density in the leads, and vice versa. Appropriate gate biasing enables the dot
occupancy to be reduced to the single-electron level, as evidenced by
magnetospectroscopy measurements of the ground state of the first two charge
transitions. Independent gate control of the electron reservoirs also enables
discrimination between excited states of the dot and density of states
modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter
Pneumatic press equipped with the Vortex system for white grapes processing: First results
The interaction between mechanical, computer and electronic technologies offers nowadays highly innovative solutions to be applied to the oenological machinery industry. Grapes pressing for the extraction of must from the grapes has a fundamental role for obtaining wines with high quality. The pneumatic presses commonly used work with a discontinuous cycle, taking on average about 3 hours for the extraction of the juice from the grapes. During this period, the presence of oxygen in contact with grapes can modify the qualitative characteristics of the future wine. The aim of the research was to study the \u201cVortex System\u201d applied to a pneumatic press and to evaluate the quality of wines obtained in reduction. The study was carried out in a modern winery in the province of Palermo (Italy) using cv. Catarratto lucido grapes. The machine used in the tests was a pneumatic press with a capacity of 1,900 / 2,500 kg by Puleo Srl company (Italy), equipped with the patent "Vortex System". It consists in the recovery of the inert gas by means of a passage and recirculation apparatus during grapes pressing allowing the must extraction in inert and controlled atmosphere, the non-oxidation of the product and a re-use of the gaseous component. Two operating modes were applied: AP (Air Pressing) mode, the traditional pressing mode in presence of oxygen, and NP (Nitrogen Pressing) mode with the Vortex System, performed under inert gas with nitrogen recovery. The following analytical determinations were performed on wines in triplicates: alcohol [%/vol], density [g/l], sugar [g/l], pH, total acidity [g/l], volatile acidity [g/l], malic acid [g/l], citric acid [g/l], tartaric acid [g/l], potassium [g/l], glycerin [g/l], ashes [g/l], absorbance at 420, 520 and 620 nm, polyphenols [mg/l], catechins [mg/l], free sulfur dioxide [mg/l], total sulfur dioxide [mg/l]. The use of the pneumatic press equipped with the Vortex System allowed to obtain excellent values of volatile acidity, absorbance at 420 nm, catechins in white wines and a rich aromatic component both in primary and secondary aromas
A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b
The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently
one of the most widely used instruments for observing exoplanetary atmospheres,
especially with the use of the spatial scanning technique. An increasing number
of exoplanets have been studied using this technique as it enables the
observation of bright targets without saturating the sensitive detectors. In
this work we present a new pipeline for analyzing the data obtained with the
spatial scanning technique, starting from the raw data provided by the
instrument. In addition to commonly used correction techniques, we take into
account the geometric distortions of the instrument, whose impact may become
important when combined to the scanning process. Our approach can improve the
photometric precision for existing data and also push further the limits of the
spatial scanning technique, as it allows the analysis of even longer spatial
scans. As an application of our method and pipeline, we present the results
from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We
calculate the transit depth per wavelength channel with an average relative
uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully
Bayesian spectral retrieval code, which confirms the presence of water vapor
and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits
our ability to disentangle the degeneracies between the fitted atmospheric
parameters. Additional data over a broader spectral range are needed to address
this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap
Detection of an atmosphere around the super-Earth 55 Cancri e
We report the analysis of two new spectroscopic observations of the
super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera
onboard the HST. 55 Cancri e orbits so close to its parent star, that
temperatures much higher than 2000 K are expected on its surface. Given the
brightness of 55 Cancri, the observations were obtained in scanning mode,
adopting a very long scanning length and a very high scanning speed. We use our
specialized pipeline to take into account systematics introduced by these
observational parameters when coupled with the geometrical distortions of the
instrument. We measure the transit depth per wavelength channel with an average
relative uncertainty of 22 ppm per visit and find modulations that depart from
a straight line model with a 6 confidence level. These results suggest
that 55 Cancri e is surrounded by an atmosphere, which is probably
hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has
identified HCN to be the most likely molecular candidate able to explain the
features at 1.42 and 1.54 m. While additional spectroscopic observations
in a broader wavelength range in the infrared will be needed to confirm the HCN
detection, we discuss here the implications of such result. Our chemical model,
developed with combustion specialists, indicates that relatively high mixing
ratios of HCN may be caused by a high C/O ratio. This result suggests this
super-Earth is a carbon-rich environment even more exotic than previously
thought.Comment: 10 pages, 10 figures, 4 tables, Accepted for publication in Ap
- …
