1,652 research outputs found

    "Meniscal" scar as a landmark for the joint line in revision total knee replacement

    Get PDF
    AIM\textbf{AIM}: To determine whether tissue identified at the joint line was actually remnant "meniscal" scar tissue or not. METHODS\textbf{METHODS}: Nine patients undergoing revision knee surgery following informed consent had meniscal scar tissue sent to the histology department for analyses. All revisions were performed where joint line had been raised or lowered at earlier surgery. Although preoperative radiographic evaluations suggested that the joint line had been altered, intraoperatively there was scar tissue at the level of the recreated joint line. This scar tissue has traditionally been described as meniscal scar, and to identify the origins of this tissue, samples were sent for histological analyses. The tissue samples were stored in formalin, and embedded and sectioned before undergoing histochemical staining. All samples underwent macroscopic and microscopic examination by a histopathologist who was blind to the study aims. The specific features that were examined included tissue organisation, surface and central composition, cellular distribution including histiocytes, nuclear ratio and vasculature. Atypical and malignant features, inflammation and degeneration were specifically looked for. A statistical review of the study was performed by a biomedical statistician. RESULTS\textbf{RESULTS}: The histological findings for the nine patients showing the macroscopic and microscopic findings, and the conclusion are outlined in a Table. The histological analyses were reviewed to determine whether the tissue samples were likely to be meniscal scar tissue. The response was yes (2, 22%), no (6, 67%) and maybe (1, 11%) based on the conclusions. The results were "yes" when on macroscopy, firm cream tissue was identified. In these two "yes" samples, microscopic analyses showed organised fibrous tissue with focal degenerative areas with laminated pattern associated with histiocytes peripherally but no inflammation. The "no" samples were assessed macroscopically and microscopically and were deemed to have appearances representing fibrous synovial tissue and features in keeping with degenerate scar tissue or connective tissue. One sample was indeterminate and microscopically contained fibro-collagenous tissue with synovial hyperplasia. It also contained some degenerate hyalinised tissue that may represent cartilage, but the appearances were not specific. CONCLUSION\textbf{CONCLUSION}: Based on our pilot study, we recommend reliance on a number of markers to identify the joint line as outlined above, and to exercise caution in using the "meniscal" scar

    Does \u2018bigger\u2019mean \u2018better\u2019? Pitfalls and shortcuts associated with big data for social research

    Get PDF
    \u2018Big data is here to stay.\u2019 This key statement has a double value: is an assumption as well as the reason why a theoretical reflection is needed. Furthermore, Big data is something that is gaining visibility and success in social sciences even, overcoming the division between humanities and computer sciences. In this contribution some considerations on the presence and the certain persistence of Big data as a socio-technical assemblage will be outlined. Therefore, the intriguing opportunities for social research linked to such interaction between practices and technological development will be developed. However, despite a promissory rhetoric, fostered by several scholars since the birth of Big data as a labelled concept, some risks are just around the corner. The claims for the methodological power of bigger and bigger datasets, as well as increasing speed in analysis and data collection, are creating a real hype in social research. Peculiar attention is needed in order to avoid some pitfalls. These risks will be analysed for what concerns the validity of the research results \u2018obtained through Big data. After a pars distruens, this contribution will conclude with a pars construens; assuming the previous critiques, a mixed methods research design approach will be described as a general proposal with the objective of stimulating a debate on the integration of Big data in complex research projecting

    Age-period-cohort analysis for trends in body mass index in Ireland

    Get PDF
    Background: Obesity is a growing problem worldwide and can often result in a variety of negative health outcomes. In this study we aim to apply partial least squares (PLS) methodology to estimate the separate effects of age, period and cohort on the trends in obesity as measured by body mass index (BMI). Methods. Using PLS we will obtain gender specific linear effects of age, period and cohort on obesity. We also explore and model nonlinear relationships of BMI with age, period and cohort. We analysed the results from 7,796 men and 10,220 women collected through the SLAN (Surveys of Lifestyle, attitudes and Nutrition) in Ireland in the years 1998, 2002 and 2007. Results: PLS analysis revealed a positive period effect over the years. Additionally, men born later tended to have lower BMI (-0.026 kg·m-2 yr-1, 95% CI: -0.030 to -0.024) and older men had in general higher BMI (0.029 kg·m -2 yr-1, 95% CI: 0.026 to 0.033). Similarly for women, those born later had lower BMI (-0.025 kg·m-2 yr-1, 95% CI: -0.029 to -0.022) and older women in general had higher BMI (0.029 kg·m-2 yr-1, 95% CI: 0.025 to 0.033). Nonlinear analyses revealed that BMI has a substantial curvilinear relationship with age, though less so with birth cohort. Conclusion: We notice a generally positive age and period effect but a slightly negative cohort effect. Knowing this, we have a better understanding of the different risk groups which allows for effective public intervention measures to be designed and targeted for these specific population subgroups

    Taking the pulse of Mars via dating of a plume-fed volcano

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Seamounts

    Get PDF
    Definition: Seamounts are literally mountains rising from the seafloor. More specifically, they are “any geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmasses” (Staudigel et al., 2010). The term “guyot” can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as “knolls” (e.g., Hirano et al., 2008). “Petit spots” are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006)

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications
    corecore