1,187 research outputs found

    Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Get PDF
    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼ 1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 µg m−3 and peak concentrations close to 100 µg m−3 . Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 µg m−3 . The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 µg m−3 , respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 µg m−3 , with an average concentration of 1.3 µg m−3 . During BB peaks, organics accounted for over 90 % of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ∼= 0.25 to O : C ∼= 0.6), no remarkable change is observed in the H : C ratio (∼ 1.35). Such a result contrasts strongly with previous observations of chemical ageing of both urban and Amazonian biogenic aerosols. At higher levels of processing (O : C > 0.6), the H : C ratio changes with a H : C/O : C slope of −0.5, possibly due to the development of a combination of BB (H : C/O : C slope = 0) and biogenic (H : C/O : C slope = −1) organic aerosol (OA). An analysis of the 1OA/1CO mass ratios yields very little enhancement in the OA loading with atmospheric processing, consistent with previous observations. These results indicate that negligible secondary organic aerosol (SOA) formation occurs throughout the observed BB plume Published by Copernicus Publications on behalf of the European Geosciences Union. 12070 J. Brito et al.: Ground-based aerosol characterization during SAMBBA processing, or that SOA formation is almost entirely balanced by OA volatilization. Positive matrix factorization (PMF) of the organic aerosol spectra resulted in three factors: fresh BBOA, aged BBOA, and low-volatility oxygenated organic aerosol (LV-OOA). Analysis of the diurnal patterns and correlation with external markers indicates that during the first part of the campaign, OA concentrations are impacted by local fire plumes with some chemical processing occurring in the near-surface layer. During the second part of the campaign, long-range transport of BB plumes above the surface layer, as well as potential SOAs formed aloft, dominates OA concentrations at our ground-based sampling site. This manuscript describes the first ground-based deployment of the aerosol mass spectrometry at a site heavily impacted by biomass burning in the Amazon region, allowing a deeper understanding of aerosol life cycle in this important ecosystem.This work was supported by the Foundation for Research Support of the State of São Paulo (FAPESP, projects 2012/14437-9 and 2013/05014-0), CNPq project 475735- 2012-9, INCT Amazonia, and Natural Environment Research Council (NERC) project NE/J010073/1. We thank A. Ribeiro, A. L. Loureiro, F. Morais, F. Jorge, and S. Morais for technical and logistics support. We thank the National Institute of Meteorology for providing valuable meteorological data. We gratefully acknowledge S. Hacon, J. Silva, and W. Bastos for support in the successful operation of the sampling site

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis

    Near-field emission profiling of Rainforest and Cerrado fires in Brazil during SAMBBA 2012

    Get PDF
    This discussion paper is a preprint. A revision of this manuscript was accepted for the journal Atmospheric Chemistry and Physics (ACP).We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA) Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time Of Flight Aerosol Mass Spectrometer (C-ToF-AMS) and a Single Particle Soot Photometer (SP2) are reported for the first time in a tropical biomass burning environment. Emissions from a mostly-smouldering rainforest wildfire in Rondonia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the rainforest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly-smouldering emissions. We determined fire integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg−1) compared to the rainforest fire (EFBC of 0.019 ± 0.006 g kg−1) and more than six times the amount of organic aerosol was emitted from the rainforest fire per unit of fuel combustion (EFOC of 5.00 ± 1.58 g kg−1) compared to the Cerrado fires (EFOC of 0.82 ± 0.26 g kg−1). Particulate phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel content, along with different measurement techniques. Previous modelling studies focussed on the biomass burning season in tropical South America have required significant scaling of emissions to reproduce in-situ and satellite aerosol concentrations over the region. Our results do not indicate that emission factors used in inventories are biased low, which could be one potential cause of the reported underestimates in modelling studies. This study supplements and updates trace gas and particulate emission factors for fire type specific biomass burning in Brazil for use in weather and climate models. The study illustrates that initial fire conditions can result in substantial differences in terms of their emitted chemical components, which can potentially perturb the Earth system.We would like to acknowledge the substantial efforts of the whole SAMBBA team before, during and after the project. Airborne data was obtained using the BAe-146-301 Atmospheric Research Aircraft (ARA) flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements (FAAM), which is a joint entity of the Natural Environment Research Council (NERC) and the Met Office. Active fire data was produced by the University of Maryland and acquired from the online Fire Information for Resource Management System (FIRMS; https://earthdata.nasa.gov/data/near-real-time-data/firms/abouts; specific product: MCD14ML). E. Darbyshire was supported by NERC studentship NE/J500057/1 and NE/K500859/1. This work was supported by the NERC SAMBBA project NE/J010073/1

    Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia

    Get PDF
    Deforestation rates have declined substantially across the Brazilian Legal Amazon (BLA) over the period from 2000–2017. However, reductions in fire, aerosol and carbon dioxide have been far less significant than deforestation, even when accounting for inter-annual variability in precipitation. Our observations and analysis support a decoupling between fire and deforestation that has exacerbated forest degradation in the BLA. Basing aerosol and carbon dioxide emissions on deforestation rates, without accounting for forest degradation will bias these important climate and ecosystem-health parameters low, both now and in the future. Recent increases in deforestation rate since 2014 will enhance such degradation, particularly during drought-conditions, increasing emissions of aerosol and greenhouse gases. Given Brazil’s committed Nationally Determined Contribution under the Paris Agreement, failure to account for forest degradation fires will paint a false picture of prior progress and potentially have profound implications for both regional and global climate

    Night-time measurements of HOx during the RONOCO project and analysis of the sources of HO2

    Get PDF
    Measurements of the radical species OH and HO2 were made using the fluorescence assay by gas expansion (FAGE) technique during a series of night-time and daytime flights over the UK in summer 2010 and winter 2011. OH was not detected above the instrument's 1σ limit of detection during any of the night-time flights or during the winter daytime flights, placing upper limits on [OH] of 1.8 × 106 molecule cm−3 and 6.4 × 105 molecule cm−3 for the summer and winter flights, respectively. HO2 reached a maximum concentration of 3.2 × 108 molecule cm−3 (13.6 pptv) during a night-time flight on 20 July 2010, when the highest concentrations of NO3 and O3 were also recorded. An analysis of the rates of reaction of OH, O3, and the NO3 radical with measured alkenes indicates that the summer night-time troposphere can be as important for the processing of volatile organic compounds (VOCs) as the winter daytime troposphere. An analysis of the instantaneous rate of production of HO2 from the reactions of O3 and NO3 with alkenes has shown that, on average, reactions of NO3 dominated the night-time production of HO2 during summer and reactions of O3 dominated the night-time HO2 production during winter

    Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine

    Get PDF
    Background: More effective chemotherapies are urgently needed for bladder cancer, a major cause of morbidity and mortality worldwide. We therefore explored the efficacy of the combination of gemcitabine and AZD7762, a checkpoint kinase 1/2 (CHK1/2) inhibitor, for bladder cancer. Methods: Viability, clonogenicity, cell cycle distribution and apoptosis were assessed in urothelial cancer cell lines and various non-malignant urothelial cells treated with gemcitabine and AZD7762. DNA damage was assessed by ?H2A.X and 53-BP1 staining and checkpoint activation was followed by Western blotting. Pharmacological inhibition of CHK1 and CHK2 was compared to downregulation of either CHK1 or CHK2 using siRNAs. Results: Combined use of gemcitabine and AZD7762 synergistically reduced urothelial carcinoma cell viability and colony formation relative to either single treatment. Non-malignant urothelial cells were substantially less sensitive to this drug combination. Gemcitabine plus AZD7762 inhibited cell cycle progression causing cell accumulation in S-phase. Moreover, the combination induced pronounced levels of apoptosis as indicated by an increase in the fraction of sub-G1 cells, in the levels of cleaved PARP, and in caspase 3/7 activity. Mechanistic investigations showed that AZD7762 treatment inhibited the repair of gemcitabine-induced double strand breaks by interference with CHK1, since siRNA-mediated depletion of CHK1 but not of CHK2 mimicked the effects of AZD7762. Conclusions: AZD7762 enhanced sensitivity of urothelial carcinoma cells to gemcitabine by inhibiting DNA repair and disturbing checkpoints. Combining gemcitabine with CHK1 inhibition holds promise for urothelial cancer therapy

    Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model

    Get PDF
    Vegetation fires emit large quantities of aerosol into the atmosphere, impacting regional air quality and climate. Previous work has used comparisons of simulated and observed aerosol optical depth (AOD) in regions heavily impacted by fires to suggest that emissions of aerosol particles from fires may be underestimated by a factor of 2–5. Here we use surface, aircraft and satellite observations made over the Amazon during September 2012, along with a global aerosol model to improve understanding of aerosol emissions from vegetation fires. We apply three different satellite-derived fire emission datasets (FINN, GFED, GFAS) in the model. Daily mean aerosol emissions in these datasets vary by up to a factor of 3.7 over the Amazon during this period, highlighting the considerable uncertainty in emissions. We find variable agreement between the model and observed aerosol mass concentrations. The model reproduces observed aerosol concentrations over deforestation fires well in the western Amazon during dry season conditions with FINN or GFED emissions and during dry–wet transition season conditions with GFAS emissions. In contrast, the model underestimates aerosol concentrations over savanna fires in the Cerrado environment east of the Amazon Basin with all three fire emission datasets. The model generally underestimates AOD compared to satellite and ground stations, even when the model reproduces the observed vertical profile of aerosol mass concentration. We suggest it is likely caused by uncertainties in the calculation of AOD, which are as large as ∼90 %, with the largest sensitivities due to uncertainties in water uptake and relative humidity. Overall, we do not find evidence that particulate emissions from fires are systematically underestimated in the Amazon region and we caution against using comparison with AOD to constrain particulate emissions from fires
    corecore