124 research outputs found

    A Reduction in Ribonucleotide Reductase Activity Slows Down the Chromosome Replication Fork but Does Not Change Its Localization

    Get PDF
    BACKGROUND:It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli. METHODOLOGY/PRINCIPAL FINDINGS:Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a "delay" in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a "repair structure" during the initial phase of the SOS response. CONCLUSION/SIGNIFICANCE:The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation

    Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome

    Get PDF
    In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks

    An Easy-To-Use Simulation Program Demonstrates Variations in Bacterial Cell Cycle Parameters Depending on Medium and Temperature

    Get PDF
    Many studies are performed on chromosome replication and segregation in Escherichia coli and other bacteria capable of complex replication with C phases spanning several generations. For such investigations an understanding of the replication patterns, including copy numbers of origins and replication forks, is crucial for correct interpretation of the results

    The DnaA Tale

    Get PDF
    More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model

    BayesPI - a new model to study protein-DNA interactions: a case study of condition-specific protein binding parameters for Yeast transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have incorporated Bayesian model regularization with biophysical modeling of protein-DNA interactions, and of genome-wide nucleosome positioning to study protein-DNA interactions, using a high-throughput dataset. The newly developed method (BayesPI) includes the estimation of a transcription factor (TF) binding energy matrices, the computation of binding affinity of a TF target site and the corresponding chemical potential.</p> <p>Results</p> <p>The method was successfully tested on synthetic ChIP-chip datasets, real yeast ChIP-chip experiments. Subsequently, it was used to estimate condition-specific and species-specific protein-DNA interaction for several yeast TFs.</p> <p>Conclusion</p> <p>The results revealed that the modification of the protein binding parameters and the variation of the individual nucleotide affinity in either recognition or flanking sequences occurred under different stresses and in different species. The findings suggest that such modifications may be adaptive and play roles in the formation of the environment-specific binding patterns of yeast TFs and in the divergence of TF binding sites across the related yeast species.</p

    Association of the Chromosome Replication Initiator DnaA with the Escherichia coli Inner Membrane In Vivo: Quantity and Mode of Binding

    Get PDF
    DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein’s domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA

    Genome and transcriptomic analysis of the adaptation of Escherichia coli to environmental stresses

    No full text
    In natural niches, bacteria are forced to spend most of their lives under various environmental stresses, such as nutrient limitation, heavy metal pollution, heat and antibiotic stress. To cope with adverse environments, bacterial genome can during the life cycle, produce potential adaptive mutants. The genomic changes, especially mutations, in the genes that encode RNA polymerase and transcription factors, might lead to variations in the transcriptome. These variations enable bacteria to cope with environmental stresses through physiological adaptation in response to stress. This paper reviews the recent contributions of genomic and transcriptomic analyses in understanding the adaption mechanism of Escherichia coli to environmental stresses. Various genomic changes have been observed in E. coli strains in laboratory or under natural stresses, including starvation, heavy metals, acidic conditions, heat shock and antibiotics. The mutations include slight changes (one to several nucleotides), deletions, insertions, chromosomal rearrangements and variations in copy numbers. The transcriptome of E. coli largely changes due to genomic mutations. However, the transcriptional profiles vary due to variations in stress selections. Cellular adaptation to the selections is associated with transcriptional changes resulting from genomic mutations. Changes in genome and transcriptome are cooperative and jointly affect the adaptation of E. coli to different environments. This comprehensive review reveals that coordination of genome mutations and transcriptional variations needs to be explored further to provide a better understanding of the mechanisms of bacterial adaptation to stresses

    Characterizing Common Factors Affecting Replication Initiation During H2O2 Exposure and Genetic Mutation-Induced Oxidative Stress in Escherichia coli

    No full text
    Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and mutations in antioxidant enzymes suppress replication initiation in Escherichia coli. The existence of common regulatory factors governing replication initiation across diverse causes-induced oxidative stress remains unclear. In this study, we utilized flow cytometry to determine the replication pattern of E. coli, and found that oxidative stress also participated in the inhibition of replication initiation by a defective iron regulation (fur-bfr-dps deletion). Adding a certain level of ATP promoted replication initiation in various antioxidant enzyme-deficient mutants and the &Delta;fur&Delta;bfr&Delta;dps mutant, suggesting that low ATP levels could be a common factor in the inhibition of replication initiation by different causes-induced oxidative stress. More potential common factors were screened using proteomics, followed by genetic validation with H2O2 stress. We found that oxidative stress might mediate the inhibition of replication initiation by interfering with the metabolism of glycine, glutamate, ornithine, and aspartate. Blocking CcmA-dependent cytochrome c biosynthesis, deleting the efflux pump proteins MdtABCD and TolC, or the arabinose transporter AraFHG eliminated the replication initiation inhibition by H2O2. In conclusion, this study uncovers a common multifactorial pathway of different causes-induced oxidative stress inhibiting replication initiation. Dormant and persistent bacteria exhibit an arrested or slow cell cycle, and non-lethal oxidative stress promotes their formation. Our findings contribute to exploring strategies to limit dormant and persistent bacterial formation by maintaining faster DNA replication initiation (cell cycle progression)
    corecore