6,762 research outputs found

    Me estuve quieto: el concepto de estado y el llamado Se aspectual

    Get PDF

    Epigenomes in Cardiovascular Disease.

    Get PDF
    If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies

    Mobilizing agro-biodiversity and social networks to cope with adverse effects of climate and social changes: experiences from Kitui, Kenya

    Get PDF
    Poster presented at 13th Congress of the International Society of Ethnobiology. Montpellier (France), 20-25 May 201

    Magnetic ordering and fluctuation in kagome lattice antiferromagnets, Fe and Cr jarosites

    Full text link
    Jarosite family compounds, KFe_3(OH)_6(SO_4)_2, (abbreviate Fe jarosite), and KCr_3(OH)_6(SO_4)_2, (Cr jarosite), are typical examples of the Heisenberg antiferromagnet on the kagome lattice and have been investigated by means of magnetization and NMR experiments. The susceptibility of Cr jarosite deviates from Curie-Weiss law due to the short-range spin correlation below about 150 K and shows the magnetic transition at 4.2 K, while Fe jarosite has the transition at 65 K. The susceptibility data fit well with the calculated one on the high temperature expansion for the Heisenberg antiferromagnet on the kagome lattice. The values of exchange interaction of Cr jarosite and Fe jarosite are derived to be J_Cr = 4.9 K and J_Fe = 23 K, respectively. The 1H-NMR spectra of Fe jarosite suggest that the ordered spin structure is the q = 0 type with positive chirality of the 120 degrees configuration. The transition is caused by a weak single-ion type anisotropy. The spin-lattice relaxation rate, 1/T_1, of Fe jarosite in the ordered phase decreases sharply with lowering the temperature and can be well explained by the two-magnon process of spin wave with the anisotropy.Comment: REVTeX, 14 pages with 5 figures. Submitted to Canadian Journal of Physic

    Analysis of Magnetization Reversal Process of Nd-Fe-B Sintered Magnets by Magnetic Domain Observation Using Kerr Microscope

    Get PDF
    We used a Kerr microscope, image processing, and photo editing to clarify magnetization reversal and its propagation in a sintered Nd-Fe-B magnet. Magnetic domain change was observed when a dc field from +20 to 20 kOe was applied to a sintered Nd-Fe-B magnet. Simultaneous magnetization reversal in several grains along the easy axis direction and its propagation to neighboring grains occurred. This indicates that the nucleation field in a grain and magnetic interaction between grains are important controlling factors of the coercivity of sintered Nd-Fe-B magnets

    Unusual Low-Temperature Phase in VO2_2 Nanoparticles

    Full text link
    We present a systematic investigation of the crystal and electronic structure and the magnetic properties above and below the metal-insulator transition of ball-milled VO2_2 nanoparticles and VO2_2 microparticles. For this research, we performed a Rietveld analysis of synchrotron radiation x-ray diffraction data, O KK x-ray absorption spectroscopy, V L3L_3 resonant inelastic x-ray scattering, and magnetic susceptibility measurements. This study reveals an unusual low-temperature phase that involves the formation of an elongated and less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic contribution from the nanoparticles. We show that the change in the crystal structure is consistent with the change in the electronic states around the Fermi level, which leads us to suggest that the Peierls mechanism contributes to the energy splitting of the a1ga_{1g} state. Furthermore, we find that the high-temperature rutile structure of the nanoparticles is almost identical to that of the microparticles.Comment: 7 pages, 8 figures, 2 table

    Global existence and full regularity of the Boltzmann equation without angular cutoff

    Get PDF
    We prove the global existence and uniqueness of classical solutions around an equilibrium to the Boltzmann equation without angular cutoff in some Sobolev spaces. In addition, the solutions thus obtained are shown to be non-negative and CC^\infty in all variables for any positive time. In this paper, we study the Maxwellian molecule type collision operator with mild singularity. One of the key observations is the introduction of a new important norm related to the singular behavior of the cross section in the collision operator. This norm captures the essential properties of the singularity and yields precisely the dissipation of the linearized collision operator through the celebrated H-theorem
    corecore