5,627 research outputs found
Generalized Jack polynomials and the AGT relations for the group
We find generalized Jack polynomials for the group and verify that
their Selberg averages for several first levels are given by Nekrasov
functions. To compute the averages we derive recurrence relations for the
Selberg integrals.Comment: 6 pages, refs added, typos corrected, published versio
Spreading of Antarctic Bottom Water in the Atlantic Ocean
This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Brazil Basin splits. Part of the water flows through the Romanche and Chain fracture zones. The other part flows to the North American Basin. Part of the latter flow propagates through the Vema Fracture Zone into the Northeast Atlantic. The properties of bottom water in the Kane Gap and Discovery Gap are also analyzed
Molecular Motors Interacting with Their Own Tracks
Dynamics of molecular motors that move along linear lattices and interact
with them via reversible destruction of specific lattice bonds is investigated
theoretically by analyzing exactly solvable discrete-state ``burnt-bridge''
models. Molecular motors are viewed as diffusing particles that can
asymmetrically break or rebuild periodically distributed weak links when
passing over them. Our explicit calculations of dynamic properties show that
coupling the transport of the unbiased molecular motor with the bridge-burning
mechanism leads to a directed motion that lowers fluctuations and produces a
dynamic transition in the limit of low concentration of weak links. Interaction
between the backward biased molecular motor and the bridge-burning mechanism
yields a complex dynamic behavior. For the reversible dissociation the backward
motion of the molecular motor is slowed down. There is a change in the
direction of the molecular motor's motion for some range of parameters. The
molecular motor also experiences non-monotonic fluctuations due to the action
of two opposing mechanisms: the reduced activity after the burned sites and
locking of large fluctuations. Large spatial fluctuations are observed when two
mechanisms are comparable. The properties of the molecular motor are different
for the irreversible burning of bridges where the velocity and fluctuations are
suppressed for some concentration range, and the dynamic transition is also
observed. Dynamics of the system is discussed in terms of the effective driving
forces and transitions between different diffusional regimes
Analitic Investigation of the Regularities of Changing Dust Concentration During the Abrasive Decrease of Stone Structures
In the process of repair or restoration of building structures, it is often necessary to strengthen building structures from limestone-shell rock, concrete, reinforced concrete, hard materials-granite, basalt, etc. by cutting or making cuts of the required size with detachable circles of synthetic diamond and cubic boron nitride (CA and CBN)The cutting process is accompanied by considerable dust formation, which can be both harmful and dangerous factor in the work.The aim of the work is studying the process of dust sedimentation and the regularity of the change in dust concentration during the abrasive cutting of concrete and stone materials.Mathematical models have been developed – dust emission from under the wheel, speed of sedimentation of dust particles depending on their material, size and shape, and also depending on temperature, pressure and humidity, the concentration of dust in the working space and the concentration change during the cutting cycle are calculated.It is shown that the velocity of the sedimentation of particles depends significantly on the shape. The higher the sphericity, the higher the sedimentation rate. The ambient temperature has little effect on the sedimentation rate, in the temperature range (-20 → + 40 °C) at which the operation takes place.The sedimentation rate of dust particles generated by cutting the most common building stone materials also differs slightly. Almost the same sedimentation rate has dust particles obtained by cutting basalt and concrete. A bit higher is the sedimentation rate of particles from granite.The sedimentation rate of particles of generated dust is about 600-700 cm/h or 10-11 cm/min for particles measuring 6 μm. This means that at a production height of about 2 m (200 cm) during the operating cycle (about 3 min), the dust will remain at an altitude of about 1.5 m, i.е. practically remains in the working area. This gives grounds to assert about a high concentration of dust during the cutting cycle (about 4.8 108/m3)
-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces
We describe the general strategy for lifting the Wess-Zumino-Witten model
from the level of one-loop Kac-Moody to generic
quantum toroidal algebras. A nearly exhaustive presentation is given for the
two series and
, when screenings do not exist
and thus all the correlators are purely algebraic, i.e. do not include
additional hypergeometric type integrations/summations. Generalizing the
construction of the intertwiner (refined topological vertex) of the
Ding-Iohara-Miki (DIM) algebra, we obtain the intertwining operators of the
Fock representations of the quantum toroidal algebra of type . The
correlation functions of these operators satisfy the
-Knizhnik-Zamolodchikov (KZ) equation, which features the -matrix. Matching with the Nekrasov function for the instanton counting on
the ALE space is worked out explicitly. We also present an important
application of the DIM formalism to the study of gauge theories described
by the double elliptic integrable systems. We show that the modular and
periodicity properties of the gauge theories are neatly explained by the
network matrix models providing solutions to the elliptic -KZ equations.Comment: 56 page
Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
We develop a theory to describe the reorientation phenomena in the lamellar
phase of block copolymer melt under reciprocating shear flow. We show that
similar to the steady-shear, the oscillating flow anisotropically suppresses
fluctuations and gives rise to the parallel-perpendicular orientation
transition. The experimentally observed high-frequency reverse transition is
explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR
Symmetric achromatic low-beta collider interaction region design concept
We present a new symmetry-based concept for an achromatic low-beta collider
interaction region design. A specially-designed symmetric Chromaticity
Compensation Block (CCB) induces an angle spread in the passing beam such that
it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs
placed symmetrically around an interaction point allow simultaneous
compensation of the 1st-order chromaticities and chromatic beam smear at the IP
without inducing significant 2nd-order aberrations to the particle trajectory.
We first develop an analytic description of this approach and explicitly
formulate 2nd-order aberration compensation conditions at the interaction
point. The concept is next applied to develop an interaction region design for
the ion collider ring of an electron-ion collider. We numerically evaluate
performance of the design in terms of momentum acceptance and dynamic aperture.
The advantages of the new concept are illustrated by comparing it to the
conventional distributed-sextupole chromaticity compensation scheme.Comment: 12 pages, 17 figures, to be submitted to Phys. Rev. ST Accel. Beam
- …
