14,490 research outputs found

    Integrability in non-perturbative QFT

    Full text link
    Exact non-perturbative partition functions of coupling constants and external fields exhibit huge hidden symmetry, reflecting the possibility to change integration variables in the functional integral. In many cases this implies also some non-linear relations between correlation functions, typical for the tau-functions of integrable systems. To a variety of old examples, from matrix models to Seiberg-Witten theory and AdS/CFT correspondence, now adds the Chern-Simons theory of knot invariants. Some knot polynomials are already shown to combine into tau-functions, the search for entire set of relations is still in progress. It is already known, that generic knot polynomials fit into the set of Hurwitz partition functions -- and this provides one more stimulus for studying this increasingly important class of deformations of the ordinary KP/Toda tau-functions.Comment: 10 pages, conference tal

    Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations

    Full text link
    Character expansion expresses extended HOMFLY polynomials through traces of products of finite dimensional R- and Racah mixing matrices. We conjecture that the mixing matrices are expressed entirely in terms of the eigenvalues of the corresponding R-matrices. Even a weaker (and, perhaps, more reliable) version of this conjecture is sufficient to explicitly calculate HOMFLY polynomials for all the 3-strand braids in arbitrary (anti)symmetric representations. We list the examples of so obtained polynomials for V=[3] and V=[4], and they are in accordance with the known answers for torus and figure-eight knots, as well as for the colored special and Jones polynomials. This provides an indirect evidence in support of our conjecture.Comment: 20 pages + 21 pages of knot table
    corecore