53,834 research outputs found
Basic research in wake vortex alleviation using a variable twist wing
The variable twist wing concept was used to investigate the relative effects of lift and turbulence distribution on the rolled up vortex wake. Several methods of reducing the vortex strength behind an aircraft were identified. These involve the redistribution of lift spanwise on the wing and drag distribution along the wing. Initial attempts to use the variable twist wing velocity data to validate the WAKE computer code have shown a strong correlation, although the vorticity levels were not exactly matched
Study of LH2 fueled subsonic passenger transport aircraft
The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise
Minimum energy, liquid hydrogen supersonic cruise vehicle study
The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization
Chameleon effect and the Pioneer anomaly
The possibility that the apparent anomalous acceleration of the Pioneer 10
and 11 spacecraft may be due, at least in part, to a chameleon field effect is
examined. A small spacecraft, with no thin shell, can have a more pronounced
anomalous acceleration than a large compact body, such as a planet, having a
thin shell. The chameleon effect seems to present a natural way to explain the
differences seen in deviations from pure Newtonian gravity for a spacecraft and
for a planet, and appears to be compatible with the basic features of the
Pioneer anomaly, including the appearance of a jerk term. However, estimates of
the size of the chameleon effect indicate that its contribution to the
anomalous acceleration is negligible. We conclude that any inverse-square
component in the anomalous acceleration is more likely caused by an unmodelled
reaction force from solar-radiation pressure, rather than a chameleon field
effect.Comment: 16 pages; to appear in Phys.Rev.
Hypersonic cruise aircraft propulsion integration study, volume 1
A hypersonic cruise transport conceptual design is described. The integration of the subsonic, supersonic, and hypersonic propulsion systems with the aerodynamic design of the airframe is emphasized. An evaluation of various configurations of aircraft and propulsion integration concepts, and selection and refinement of a final design are given. This configuration was used as a baseline to compare two propulsion concepts - one using a fixed geometry dual combustion mode scramjet and the other a variable geometry ramjet engine. Both concepts used turbojet engines for takeoff, landing and acceleration to supersonic speed
Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86
Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations
Study of active cooling for supersonic transports
The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing
Renormalization Group Treatment of Nonrenormalizable Interactions
The structure of the UV divergencies in higher dimensional nonrenormalizable
theories is analysed. Based on renormalization operation and renormalization
group theory it is shown that even in this case the leading divergencies
(asymptotics) are governed by the one-loop diagrams the number of which,
however, is infinite. Explicit expression for the one-loop counter term in an
arbitrary D-dimensional quantum field theory without derivatives is suggested.
This allows one to sum up the leading asymptotics which are independent of the
arbitrariness in subtraction of higher order operators. Diagrammatic
calculations in a number of scalar models in higher loops are performed to be
in agreement with the above statements. These results do not support the idea
of the na\"ive power-law running of couplings in nonrenormalizable theories and
fail (with one exception) to reveal any simple closed formula for the leading
terms.Comment: LaTex, 11 page
- …
