4,980 research outputs found
Structural Evolution of Electrochemically Lithiated MoS Nanosheets and the Role of Carbon Additive in Li-Ion Batteries
Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS still hampers its implementation in high energy-density batteries. Here, by combining density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li-S systems in high energy-density batteries.C.G and M.D.V acknowledge the support from ERC starting grant 337739-HIENA. A.J.M. acknowledges the support from the Winton Programme for the Physics of Sustainability. Computational resources were provided by the Cambridge High Performance Computing service. M.H.M acknowledges the support from EPSRC Cambridge NanoDTC, EP/G037221/1
From Rotating Atomic Rings to Quantum Hall States
Considerable efforts are currently devoted to the preparation of ultracold
neutral atoms in the emblematic strongly correlated quantum Hall regime. The
routes followed so far essentially rely on thermodynamics, i.e. imposing the
proper Hamiltonian and cooling the system towards its ground state. In rapidly
rotating 2D harmonic traps the role of the transverse magnetic field is played
by the angular velocity. For particle numbers significantly larger than unity,
the required angular momentum is very large and it can be obtained only for
spinning frequencies extremely near to the deconfinement limit; consequently,
the required control on experimental parameters turns out to be far too
stringent. Here we propose to follow instead a dynamic path starting from the
gas confined in a rotating ring. The large moment of inertia of the fluid
facilitates the access to states with a large angular momentum, corresponding
to a giant vortex. The initial ring-shaped trapping potential is then
adiabatically transformed into a harmonic confinement, which brings the
interacting atomic gas in the desired quantum Hall regime. We provide clear
numerical evidence that for a relatively broad range of initial angular
frequencies, the giant vortex state is adiabatically connected to the bosonic
Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure
Erythrocyte Antibodies in AIDS are associated with mycobacteriosis and hypergammaglobulinemia
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
Alcohol Production as an Adaptive Livelihood Strategy for Women Farmers in Tanzania and Its Potential for Unintended Consequences on Women's Reproductive Health.
Although women occupy a central position in agriculture in many developing countries, they face numerous constraints to achieving their full potential including unequal access to assets and limited decision-making authority. We explore the intersection of agricultural livelihoods, food and economic security, and women's sexual and reproductive health in Iringa Region, Tanzania. Our goal was to understand whether the benefits of supporting women in the agricultural sector might also extend to more distal outcomes, including sexual and reproductive health. Using the Sustainable Livelihoods Framework to guide data collection, we conducted 13 focus group discussions (FGD) with female (n = 11) and male farmers (n = 2) and 20 in-depth interviews with agricultural extension officers (n = 10) and village agro-dealers (n = 10). Despite providing the majority of agricultural labor, women have limited control over land and earned income and have little bargaining power. In response to these constraints, women adopt adaptive livelihood strategies, such as alcohol production, that allow them to retain control over income and support their households. However, women's central role in alcohol production, in concert with the ubiquitous nature of alcohol consumption, places them at risk by enhancing their vulnerability to unsafe or transactional sex. This represents a dangerous confluence of risk for female farmers, in which alcohol plays an important role in income generation and also facilitates high-risk sexual behavior. Alcohol production and consumption has the potential to both directly and indirectly place women at risk for undesirable sexual and reproductive health outcomes. Group formation, better access to finance, and engaging with agricultural extension officers were identified as potential interventions for supporting women farmers and challenging harmful gender norms. In addition, joint, multi-sectoral approaches from health and agriculture and alternative income-generating strategies for women might better address the complexities of achieving safe and sustainable livelihoods for women in this context
Allogeneic HSCT in Adolescents and Young Adults With Primary Immunodeficiencies
Significant advances in hematopoietic transplantation over the past 20 years, have facilitated the safe transplantation of older adults with higher co-morbidities. In pediatric practice these advances have simultaneously improved outcomes for sicker children with complex, rare diseases including the primary immunodeficiencies, PID. With more widespread adoption of genetic sequencing, older patients with disease-causing mutations restricted to the hematopoietic system can be identified who may benefit from allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Here we discuss the evidence for Allo-HSCT in adolescent and younger adults (AYAs) with PID
The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles
Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events
Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder
By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups
Analytical characterization and pharmacological evaluation of the new psychoactive substance 4-fluoromethylphenidate (4F-MPH) and differentiation between the (±)-threo- and (±)-erythro- diastereomers
Misuse of (±)-threo-methylphenidate (methyl-2-phenyl-2-(piperidin-2-yl)acetate; Ritalin®, MPH) has long been acknowledged, but the appearance of MPH analogs in the form of ‘research chemicals’ has only emerged in more recent years. 4-Fluoromethylphenidate (4F-MPH) is one of these recent examples and this study presents the identification and analytical characterization of two powdered 4F-MPH products that were obtained from an online vendor in 2015. Interestingly, the products appeared to have originated from two distinct batches given that one product consisted of (±)-threo-4F-MPH isomers whereas the second sample consisted of a mixture of (±)-threo and (±)-erythro 4F-MPH. Monoamine transporter studies using rat brain synaptosomes revealed that the biological activity of the 4F-MPH mixture resided with the (±)-threo- and not the (±)-erythro isomers based on higher potencies determined for blockage of dopamine uptake (IC50 4F-MPHmixture = 66 nM vs. IC50 (±)-threo = 61 nM vs. IC50 (±)-erythro = 8,528 nM) and norepinephrine uptake (IC50 4F-MPHmixture = 45 nM vs. (±)-threo = 31 nM vs. IC50 (±)-erythro = 3,779 nM). In comparison, MPH was three times less potent than (±)-threo-4F-MPH at the dopamine transporter (IC50 = 131 nM) and around 2.5-times less potent at the norepinephrine transporter (IC50 = 83 nM). Both substances were catecholamine selective with IC50 values of 8,805 nM and >10,000 nM for (±)-threo-4F-MPH and MPH at the serotonin transporter. These findings suggest that the psychostimulant properties of (±)-threo-4F-MPH might be more potent in humans than MPH
Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses
ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot
- …
