725 research outputs found
Magnetic Transformations in the Organic Conductor kappa-(BETS)2Mn[N(CN)2]3 at the Metal-Insulator Transition
A complex study of magnetic properties including dc magnetization, 1H NMR and
magnetic torque measurements has been performed for the organic conductor
kappa-(BETS)2Mn[N(CN)2]3 which undergoes a metal-insulator transition at
T_MI~25K. NMR and the magnetization data indicate a transition in the manganese
subsystem from paramagnetic to a frozen state at T_MI, which is, however, not a
simple Neel type order. Further, a magnetic field induced transition resembling
a spin flop has been detected in the torque measurements at temperatures below
T_MI. This transition is most likely related to the spins of pi-electrons
localized on the organic molecules BETS and coupled with the manganese 3d spins
via exchange interaction.Comment: 6 pages, 5 Figures, 1 Table; Submitted to Phys.Rev.B (Nov.2010
Thermally Activated Magnetization and Resistance Decay during Near Ambient Temperature Aging of Co Nanoflakes in a Confining Semi-metallic Environment
We report the observation of magnetic and resistive aging in a self assembled
nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays
are characterized by an initial slow decay followed by a more rapid decay in
both the magnetization and resistance. The decays are large accounting for
almost 70% of the magnetization and almost 40% of the resistance for samples
deposited at 35 . For samples deposited at 50 the magnetization
decay accounts for of the magnetization and 50% of the resistance.
During the more rapid part of the decay, the concavity of the slope of the
decay changes sign and this inflection point can be used to provide a
characteristic time. The characteristic time is strongly and systematically
temperature dependent, ranging from x at 400K to x at 320K in samples deposited at . Samples deposited at 50
displayed a 7-8 fold increase in the characteristic time (compared to the samples) for a given aging temperature, indicating that this timescale may
be tunable. Both the temperature scale and time scales are in potentially
useful regimes. Pre-Aging, Scanning Tunneling Microscopy (STM) reveals that the
Co forms in nanoscale flakes. During aging the nanoflakes melt and migrate into
each other in an anisotropic fashion forming elongated Co nanowires. This aging
behavior occurs within a confined environment of the enveloping Sb layers. The
relationship between the characteristic time and aging temperature fits an
Arrhenius law indicating activated dynamics
Evidence for magnetic clusters in BaCoO
Magnetic properties of the transition metal oxide BaCoO are analyzed on
the basis of the experimental and theoretical literature available via ab inito
calculations. These can be explained by assuming the material to be formed by
noninteracting ferromagnetic clusters of about 1.2 nm in diameter separated by
about 3 diameters. Above about 50 K, the so-called blocking temperature,
superparamagnetic behavior of the magnetic clusters occurs and, above 250 K,
paramagnetism sets in.Comment: 4 pages, 1 figur
Discourse and identity in a corpus of lesbian erotica
This article uses corpus linguistic methodologies to explore representations of lesbian desires and identities in a corpus of lesbian erotica from the 1980s and 1990s. We provide a critical examination of the ways in which “lesbian gender,” power, and desire are represented, (re-)produced, and enacted, often in ways that challenge hegemonic discourses of gender and sexuality. By examining word frequencies and collocations, we critically analyze some of the themes, processes, and patterns of representation in the texts. Although rooted in linguistics, we hope this article provides an accessible, interdisciplinary, and timely contribution toward developing understandings of discursive practices surrounding gender and sexuality
First principles study of the multiferroics BiFeO, BiFeCrO, and BiCrO: Structure, polarization, and magnetic ordering temperature
We present results of an {\it ab initio} density functional theory study of
three bismuth-based multiferroics, BiFeO, BiFeCrO, and
BiCrO. We disuss differences in the crystal and electronic structure of
the three systems, and we show that the application of the LDA+ method is
essential to obtain realistic structural parameters for BiFeCrO. We
calculate the magnetic nearest neighbor coupling constants for all three
systems and show how Anderson's theory of superexchange can be applied to
explain the signs and relative magnitudes of these coupling constants. From the
coupling constants we then obtain a mean-field approximation for the magnetic
ordering temperatures. Guided by our comparison of these three systems, we
discuss the possibilities for designing a multiferroic material with large
magnetization above room temperature.Comment: 8 Pages, 4 Figure
Giant Magnetoelastic Effects in BaTiO3-based Extrinsic Multiferroic Hybrids
Extrinsic multiferroic hybrid structures consisting of ferromagnetic and
ferroelectric layers elastically coupled to each other are promising due to
their robust magnetoelectric effects even at room temperature. For a
quantitative analysis of these magnetoelectric effects, a detailed knowledge of
the piezoelectric and magnetoelastic behavior of both constituents as well as
their mutual elastic coupling is mandatory. We here report on a theoretical and
experimental study of the magnetic behavior of BaTiO3-based extrinsic
multiferroic structures. An excellent agreement between molecular dynamics
simulations and the experiments was found for Fe50Co50/BaTiO3 and Ni/BaTiO3
hybrid structures. This demonstrates that the magnetic behavior of extrinsic
multiferroic hybrid structures can be determined by means of ab-initio
calculations, allowing for the design of novel multiferroic hybrids
Magnetization and specific heat of TbFe3(BO3)4: Experiment and crystal field calculations
We have studied the thermodynamic properties of single-crystalline
TbFe3(BO3)4. Magnetization measurements have been carried out as a function of
magnetic field (up to 50 T) and temperature up to 350K with the magnetic field
both parallel and perpendicular to the trigonal c-axis of the crystal. The
specific heat has been measured in the temperature range 2-300K with a magnetic
field up to 9 T applied parallel to the c-axis. The data indicate a structural
phase transition at 192 K and antiferromagnetic spin ordering at 40 K. A
Schottky anomaly is present in the specific heat data around 20 K, arising due
to two low-lying energy levels of the Tb3+ ions being split by f-d coupling.
Below TN magnetic fields parallel to the c-axis drive a spin-flop phase
transition, which is associated with a large magnetization jump. The highly
anisotropic character of the magnetic susceptibility is ascribed mainly to the
Ising-like behavior of the Tb3+ ions in the trigonal crystal field. We describe
our results in the framework of an unified approach which is based on
mean-field approximation and crystal-field calculations.Comment: 10 pages, 10 figures, 20 references, accepted by Phys. Rev.
Thermal Casimir Force between Magnetic Materials
We investigate the Casimir pressure between two parallel plates made of
magnetic materials at nonzero temperature. It is shown that for real
magnetodielectric materials only the magnetic properties of ferromagnets can
influence the Casimir pressure. This influence is accomplished through the
contribution of the zero-frequency term of the Lifshitz formula. The
possibility of the Casimir repulsion through the vacuum gap is analyzed
depending on the model used for the description of the dielectric properties of
the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09,
Norman, OK, September 21-25, 200
The Density of States of hole-doped Manganites: A Scanning Tunneling Microscopy/Spectroscopy study
Variable temperature scanning tunneling microscopy/spectroscopy studies on
single crystals and epitaxial thin films of hole-doped manganites, which show
colossal magnetoresistance, have been done. We have investigated the variation
of the density of states, at and near the Fermi energy (), as a function
of temperature. Simple calculations have been carried out, to find out the
effect of temperature on the tunneling spectra and extract the variation of
density of states with temperature, from the observed data. We also report
here, atomic resolution images, on the single crystals and larger range images
showing the growth patterns on thin films. Our investigation shows
unambiguously that there is a rapid variation in density of states for
temperatures near the Curie temperature (). While for temperatures below
, a finite DOS is observed at , for temperatures near a hard
gap opens up in the density of states near . For temperatures much higher
than , this gap most likely gives way to a soft gap. The observed hard gap
for temperatures near , is somewhat higher than the transport gap for all
the materials. For different materials, we find that the magnitude of the hard
gap decreases as the of the material increases and eventually, for
materials with a close to 400 K, the value of the gap approaches zero.Comment: 9 pages RevTeX, 12 postscript figures, 1 table included in text,
submitted to Physical Review
Changing times in England: the influence on geography teachers’ professional practice
School geography in England has been characterised as a pendulum swinging between policies that emphasise curriculum and pedagogy alternately. In this paper, I illustrate the influence of these shifts on geography teacher's professional practice, by drawing on three “moments” from my experience as a student, teacher and teacher educator. Barnett's description of teacher professionalism as a continuous project of “being” illuminates how geography teachers can adapt to competing influences. It reflects teacher professionalism as an unfinished project, which is responsive, but not beholden, to shifting trends, and is informed by how teachers frame and enact policies. I argue that recognising these contextual factors is key to supporting geography teachers in “being” geography education professionals. As education becomes increasingly competitive on a global scale, individual governments are looking internationally for “solutions” to improve educational rankings. In this climate, the future of geography education will rest on how teachers react locally to international trends. Geography teacher educators can support this process by continuing to inform the field through meaningful geography education research, in particular in making the contextual factors of their research explicit. This can be supported through continued successful international collaboration in geography education research
- …
