19,290 research outputs found
Response to Comment on `Undamped electrostatic plasma waves' [Phys. Plasmas 19, 092103 (2012)]
Numerical and experimental evidence is given for the occurrence of the
plateau states and concomitant corner modes proposed in \cite{valentini12}. It
is argued that these states provide a better description of reality for small
amplitude off-dispersion disturbances than the conventional
Bernstein-Greene-Kruskal or cnoidal states such as those proposed in
\cite{comment
The micrometeoroid complex and evolution of the lunar regolith
The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids
Undamped electrostatic plasma waves
Electrostatic waves in a collision-free unmagnetized plasma of electrons with
fixed ions are investigated for electron equilibrium velocity distribution
functions that deviate slightly from Maxwellian. Of interest are undamped waves
that are the small amplitude limit of nonlinear excitations, such as electron
acoustic waves (EAWs). A deviation consisting of a small plateau, a region with
zero velocity derivative over a width that is a very small fraction of the
electron thermal speed, is shown to give rise to new undamped modes, which here
are named {\it corner modes}. The presence of the plateau turns off Landau
damping and allows oscillations with phase speeds within the plateau. These
undamped waves are obtained in a wide region of the plane
( being the real part of the wave frequency and the
wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs
based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that
corroborate the existence of these modes are described. It is also shown that
deviations caused by fattening the tail of the distribution shift roots off of
the thumb curve toward lower -values and chopping the tail shifts them
toward higher -values. In addition, a rule of thumb is obtained for
assessing how the existence of a plateau shifts roots off of the thumb curve.
Suggestions are made for interpreting experimental observations of
electrostatic waves, such as recent ones in nonneutral plasmas.Comment: 11 pages, 10 figure
Relaminarisation of Re_τ=100 channel flow with globally stabilising linear feedback control
The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller’s estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Re_τ = 100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl’s theory of sheared turbulence
Vortex-to-Polarization Phase Transformation Path in Pb(ZrTi)O Nanoparticles
Phase transformation in finite-size ferroelectrics is of fundamental
relevance for understanding collective behaviors and balance of competing
interactions in low-dimensional systems. We report a first-principles effective
Hamiltonian study of vortex-to-polarization transformation in
Pb(ZrTi)O nanoparticles, caused by homogeneous electric
fields normal to the vortex plane. The transformation is shown to (1) follow an
unusual {\it macroscopic} path that is symmetry non-conforming and
characterized by the occurrence of a previously unknown structure as the
bridging phase; (2) lead to the discovery of a striking collective phenomenon,
revealing how ferroelectric vortex is annihilated {\it microscopically}.
Interactions underlying these behaviors are discussed
The response of hot wires in high Reynolds-number turbulent pipe flow
Issues concerning the accuracy of hot-wire measurements in turbulent pipe flow are addressed for pipe Reynolds numbers up to 6 × 106 and hot-wire Reynolds numbers up to Rew ap 250. These include the optimization of spatial and temporal resolution and the associated feature of signal-to-noise ratio. Very high wire Reynolds numbers enable the use of wires with reduced length-to-diameter ratios compared to those typical of atmospheric conditions owing to increased wire Nusselt numbers. Simulation of the steady-state heat balance for the wire and the unetched portion of wire are used to assess static end-conduction effects: they are used to calculate wire Biot numbers, \sqrt{c_0}l , and fractional end-conduction losses, σ, which confirm the 'conduction-only' theory described by Corrsin. They show that, at Rew ap 250, the wire length-to-diameter ratio can be reduced to about 50, while keeping \sqrt{c_0}l\gt3 and σ < 7% in common with accepted limits at Rew ap 3. It is shown that these limits depend additionally on the choice of wire material and the length of unetched wire. The dynamic effects of end-cooling are also assessed using the conduction-only theory
Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis
Expanded Very Large Arrays Observations of a Proto-Cluster of Molecular Gas-Rich Galaxies at z = 4.05
We present observations of the molecular gas in the GN20 proto-cluster of galaxies at z = 4.05 using the Expanded Very Large Array (EVLA). This group of galaxies is the ideal laboratory for studying the formation of massive galaxies via luminous, gas-rich starbursts within 1.6 Gyr of the big bang. We detect three galaxies in the proto-cluster in CO 2-1 emission, with gas masses (H_2) between 10^(10) and 10^(11) × (α/0.8) M_⊙. The emission from the brightest source, GN20, is resolved with a size ~2'' and has a clear north-south velocity gradient, possibly indicating ordered rotation. The gas mass in GN20 is comparable to the stellar mass (1.3 × 10^(11) × (α/0.8) M_⊙ and 2.3 × 10^(11) M_⊙, respectively), and the sum of gas plus stellar mass is comparable to the dynamical mass of the system (~3.4 × 10^(11)[sin (i)/sin (45°)]^(–2) M_⊙), within a 5 kpc radius. There is also evidence for a tidal tail extending another 2'' north of the galaxy with a narrow velocity dispersion. GN20 may be a massive, gas-rich disk that is gravitationally disturbed, but not completely disrupted. There is one Lyman-break galaxy (BD29079) in the GN20 proto-cluster with an optical spectroscopic redshift within our search volume, and we set a 3σ limit to the molecular gas mass of this galaxy of 1.1 × 10^(10) × (α/0.8) M_⊙
Imaging the molecular gas in a submm galaxy at z = 4.05: cold mode accretion or a major merger?
We present a high resolution (down to 0.18"), multi-transition imaging study
of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of
the most luminous starburst galaxy known at z > 4, and is a member of a rich
proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO
1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI
Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the
CO 1-0 emission is 1.3 \times 10^{11} (\alpha/0.8) Mo. High resolution imaging
of CO 2-1 shows emission distributed over a large area, appearing as partial
ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than
found in the inner disk of the Milky Way, but lower than that seen in high
redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1
image at 0.2" resolution shows resolved, clumpy structure, with a few brighter
clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO
6-5 emission is consistent with a rotating disk with a rotation velocity of ~
570 km s^{-1} (using an inclination angle of 45^o), from which we derive a
dynamical mass of 3 \times 10^{11} \msun within about 4 kpc radius. The star
formation distribution, as derived from imaging of the radio synchrotron and
dust continuum, is on a similar scale as the molecular gas distribution. The
molecular gas and star formation are offset by ~ 1" from the HST I-band
emission, implying that the regions of most intense star formation are highly
dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered
rotation of this object suggests that this is not a major merger, but rather a
clumpy disk accreting gas rapidly in minor mergers or smoothly from the
proto-intracluster medium. ABSTRACT TRUNCATEDComment: 33 pages, 8 figures, submitted to the ApJ, aas latex forma
Geometric invariant theory of syzygies, with applications to moduli spaces
We define syzygy points of projective schemes, and introduce a program of
studying their GIT stability. Then we describe two cases where we have managed
to make some progress in this program, that of polarized K3 surfaces of odd
genus, and of genus six canonical curves. Applications of our results include
effectivity statements for divisor classes on the moduli space of odd genus K3
surfaces, and a new construction in the Hassett-Keel program for the moduli
space of genus six curves.Comment: v1: 23 pages, submitted to the Proceedings of the Abel Symposium
2017, v2: final version, corrects a sign error and resulting divisor class
calculations on the moduli space of K3 surfaces in Section 5, other minor
changes, In: Christophersen J., Ranestad K. (eds) Geometry of Moduli.
Abelsymposium 2017. Abel Symposia, vol 14. Springer, Cha
- …
