2,625 research outputs found
Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)
We have probed the interface of a ferromagnetic/semiconductor (FM/SC)
heterojunction by a combined high resolution photoemission spectroscopy and
x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example
of a very low reactivity interface system and it expected to constitute large
Tunnel Magnetoresistance devices. We focus on the interface atomic environment,
on the microscopic processes of the interface formation and on the iron
valence-band. We show that the Fe contact with ZnSe induces a chemical
conversion of the ZnSe outermost atomic layers. The main driving force that
induces this rearrangement is the requirement for a stable Fe-Se bonding at the
interface and a Se monolayer that floats at the Fe growth front. The released
Zn atoms are incorporated in substitution in the Fe lattice position. This
formation process is independent of the ZnSe surface termination (Zn or Se).
The Fe valence-band evolution indicates that the d-states at the Fermi level
show up even at submonolayer Fe coverage but that the Fe bulk character is only
recovered above 10 monolayers. Indeed, the Fe 1-band states,
theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe
junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review
Photon Self-Induced Spin to Orbital Conversion in TGG crystal at high laser power
In this paper, we present experimental evidence of a newly discovered
third-order nonlinear optical process Self-Induced Spin-to-Orbital Conversion
(SISTOC) of the photon angular momentum. This effect is the physical mechanism
at the origin of the depolarization of very intense laser beams propagating in
isotropic materials. The SISTOC process, like self-focusing, is triggered by
laser heating leading to a radial temperature gradient in the medium. In this
work we tested the occurrence of SISTOC in a terbium gallium garnet (TGG) rod
for an impinging laser power of about 100~W. To study the SISTOC process we
used different techniques: polarization analysis, interferometry and tomography
of the photon orbital angular momentum. Our results confirm, in particular,
that the apparent depolarization of the beam is due to the occurrence of
maximal entanglement between the spin and orbital angular momentum of the
photons undergoing the SISTOC process. This explanation of the true nature of
the depolarization mechanism could be of some help in finding novel methods to
reduce or to compensate for this usually unwanted depolarization effect in all
cases where very high laser power and good beam quality are required.Comment: 6 pages, 10 figures, submitte
Restrictions on Transversal Encoded Quantum Gate Sets
Transversal gates play an important role in the theory of fault-tolerant
quantum computation due to their simplicity and robustness to noise. By
definition, transversal operators do not couple physical subsystems within the
same code block. Consequently, such operators do not spread errors within code
blocks and are, therefore, fault tolerant. Nonetheless, other methods of
ensuring fault tolerance are required, as it is invariably the case that some
encoded gates cannot be implemented transversally. This observation has led to
a long-standing conjecture that transversal encoded gate sets cannot be
universal. Here we show that the ability of a quantum code to detect an
arbitrary error on any single physical subsystem is incompatible with the
existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change
Características morfológicas e fitossanitárias de variedades de roseira na etapa de classificação.
Some Directions beyond Traditional Quantum Secret Sharing
We investigate two directions beyond the traditional quantum secret sharing
(QSS). First, a restriction on QSS that comes from the no-cloning theorem is
that any pair of authorized sets in an access structure should overlap. From
the viewpoint of application, this places an unnatural constraint on secret
sharing. We present a generalization, called assisted QSS (AQSS), where access
structures without pairwise overlap of authorized sets is permissible, provided
some shares are withheld by the share dealer. We show that no more than
withheld shares are required, where is the minimum number
of {\em partially linked classes} among the authorized sets for the QSS. Our
result means that such applications of QSS need not be thwarted by the
no-cloning theorem. Secondly, we point out a way of combining the features of
QSS and quantum key distribution (QKD) for applications where a classical
information is shared by quantum means. We observe that in such case, it is
often possible to reduce the security proof of QSS to that of QKD.Comment: To appear in Physica Scripta, 7 pages, 1 figure, subsumes
arXiv:quant-ph/040720
Ecological risk assessment of sediment management areas : application to Sado Estuary, Portugal
The purpose of this work was to integrate different
methodologies to assess the potential ecological risk
of estuarine sedimentary management areas, using the Sado
Estuary in Portugal as case study. To evaluate the environmental
risk of sediment contamination, an integrative
and innovative approach was used involving assessment of
sediment chemistry, sediment toxicity, benthic community
structure, human driving forces and pressures and management
areas organic load levels. The basis for decisionmaking
for overall assessment was a statistical multivariate
analysis appended into a score matrix tables, using a best
expert judgment. The integrated approach allowed to
identify from the 19 management areas analyzed, three
with no risk but other three with high risk to cause adverse
effects in the biota, related with the contaminants analyzed.
The methodologies used showed to be effective as a support
for decision making leading to future estuarine management
recommendations.peerreviewe
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
Rabies screen reveals GPe control of cocaine-triggered plasticity.
Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
- …
