305 research outputs found
Discovery of Novel M. Tuberculosis Inhibitors Targeting a Phosphopantetheinyl Transferase and a Ctp Synthase
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is the leading cause of infectious death worldwide. In particular, the rise in incidence of drug resistant Mtb strains has made it imperative to develop new drugs targeting proteins that are essential to the bacteria. The utilization of genetic and biochemical techniques has led to the discovery of compounds targeting unexploited, essential Mtb targets. One such compound, the amidinourea 8918, was identified via a phenotypic screening campaign against mycobacteria. Mechanism of action studies revealed that 8918 kills Mtb via binding the active site of PptT, the type II phosphopantetheinyl transferase, resulting in partial non-competitive inhibition of the enzyme. PptT catalyzes the Mg2+ dependent transfer of the phosphopantetheine arm of Coenzyme A onto client carrier proteins, converting them from inactive apo to active holo form. Therefore, the extensive quenching of PptT’s activity attenuates Mtb’s lipid biosynthesis and virulence factor production, leading to cell death.
Furthermore, the activity of 8918 was augmented by a protein encoded just upstream of PptT, PptH. Biochemical studies revealed that the newly discovery enzyme was a phosphopantetheinyl hydrolase, possessing activity antagonistic with respect to PptT, while complementation studies confirmed that its activity contributed to 8918’s bactericidality. Structural studies indicated that the 8918-associated resistance mutations were indeed loss of function mutations which fell into one of two categories: mutations which impacted metal chelation residues and residues which introduced other structurally destabilizing mutations. Overall, these findings revealed a new mechanism of antimicrobial resistance: loss of function of an enzyme that opposes the activity of the drug target.
Another such compound, the isoindole analog LG-1-29, was identified via a phenotypic screen against mycobacteria. Subsequent resistant mutant selection suggested that the cytidine triphosphate synthetase PyrG was likely to be a target of the compound. PyrG catalyzes the ATP-dependent animation of UTP to CTP, and is therefore essential to the de-novo synthesis of CTP. While on-target studies suggested that PyrG was the target of LG-1-29, the compound failed to inhibit the recombinant enzyme. Taken together, these studies suggested that LG-1-29 may be a pro-drug, which upon chemical modification is able to inhibit PyrG
Paradoxical Association of Enhanced Cholesterol Efflux With Increased Incident Cardiovascular Risks
Objective—Diminished cholesterol efflux activity of apolipoprotein B (apoB)–depleted serum is associated with prevalent coronary artery disease, but its prognostic value for incident cardiovascular events is unclear. We investigated the relationship of cholesterol efflux activity with both prevalent coronary artery disease and incident development of major adverse cardiovascular events (death, myocardial infarction, or stroke). Approach and Results—Cholesterol efflux activity from free cholesterol–enriched macrophages was measured in 2 case–control cohorts: (1) an angiographic cohort (n=1150) comprising stable subjects undergoing elective diagnostic coronary angiography and (2) an outpatient cohort (n=577). Analysis of media from cholesterol efflux assays revealed that the high-density lipoprotein fraction (1.06
Mutations associated with progression in follicular lymphoma predict inferior outcomes at diagnosis: Alliance A151303
Follicular lymphoma (FL) is clinically heterogeneous, with select patients tolerating extended watch-and-wait, whereas others require prompt treatment, suffer progression of disease within 24 months of treatment (POD24), and/or experience aggressive histologic transformation (t-FL). Because our understanding of the relationship between genetic alterations in FL and patient outcomes remains limited, we conducted a clinicogenomic analysis of 370 patients with FL or t-FL (from Cancer and Leukemia Group B/Alliance trials 50402/50701/50803, or real-world cohorts from Washington University School of Medicine, Cleveland Clinic, or University of Miami). FL subsets by grade, stage, watch-and-wait, or POD24 status did not differ by mutation burden, whereas mutation burden was significantly higher in relapsed/refractory (rel/ref) FL and t-FL than in newly diagnosed (dx) FL. Nonetheless, mutation burden in dx FL was not associated with frontline progression-free survival (PFS). CREBBP was the only gene more commonly mutated in FL than in t-FL yet mutated CREBBP was associated with shorter frontline PFS in FL. Mutations in 20 genes were more common in rel/ref FL or t-FL than in dx FL, including 6 significantly mutated genes (SMGs): STAT6, TP53, IGLL5, B2M, SOCS1, and MYD88. We defined a mutations associated with progression (MAP) signature as ≥2 mutations in these 7 genes (6 rel/ref FL or t-FL SMGs plus CREBBP). Patients with dx FL possessing a MAP signature had shorter frontline PFS, revealing a 7-gene set offering insight into FL progression risk potentially more generalizable than the m7-Follicular Lymphoma International Prognostic Index (m7-FLIPI), which had modest prognostic value in our cohort. Future studies are warranted to validate the poor prognosis associated with a MAP signature in dx FL, potentially facilitating novel trials specifically in this high-risk subset of patients
Open-Sourced CIViC Annotation Pipeline to identify and annotate clinically relevant variants using single-molecule molecular inversion probes
PURPOSE: Clinical targeted sequencing panels are important for identifying actionable variants for patients with cancer; however, existing approaches do not provide transparent and rationally designed clinical panels to accommodate the rapidly growing knowledge within oncology.
MATERIALS AND METHODS: We used the Clinical Interpretations of Variants in Cancer (CIViC) database to develop an Open-Sourced CIViC Annotation Pipeline (OpenCAP). OpenCAP provides methods to identify variants within the CIViC database, build probes for variant capture, use probes on prospective samples, and link somatic variants to CIViC clinical relevance statements. OpenCAP was tested using a single-molecule molecular inversion probe (smMIP) capture design on 27 cancer samples from 5 tumor types. In total, 2,027 smMIPs were designed to target 111 eligible CIViC variants (61.5 kb of genomic space).
RESULTS: When compared with orthogonal sequencing, CIViC smMIP sequencing demonstrated a 95% sensitivity for variant detection (n = 61 of 64 variants). Variant allele frequencies for variants identified on both sequencing platforms were highly concordant (Pearson\u27s
CONCLUSION: The OpenCAP design paradigm demonstrates the utility of an open-source and open-access database built on attendant community contributions with peer-reviewed interpretations. Use of a public repository for variant identification, probe development, and variant interpretation provides a transparent approach to build dynamic next-generation sequencing-based oncology panels
Rare DEGS1 variant significantly alters de novo ceramide synthesis pathway
The de novo ceramide synthesis pathway is essential to human biology and health but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry−specific rare functional variant, L175Q, in DEGS1, a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders, and spur ongoing research of drug targets along this pathway
Ultra-deep sequencing reveals the mutational landscape of classical Hodgkin lymphoma
UNLABELLED: The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified \u3e95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL.
SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient
In Vitro and in Vivo Inhibition of the Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT by Amidinoureas
A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide)
G protein-coupled receptor-mediated calcium signaling in astrocytes
Astrocytes express a large variety of G~protein-coupled receptors (GPCRs)
which mediate the transduction of extracellular signals into intracellular
calcium responses. This transduction is provided by a complex network of
biochemical reactions which mobilizes a wealth of possible calcium-mobilizing
second messenger molecules. Inositol 1,4,5-trisphosphate is probably the best
known of these molecules whose enzymes for its production and degradation are
nonetheless calcium-dependent. We present a biophysical modeling approach based
on the assumption of Michaelis-Menten enzyme kinetics, to effectively describe
GPCR-mediated astrocytic calcium signals. Our model is then used to study
different mechanisms at play in stimulus encoding by shape and frequency of
calcium oscillations in astrocytes.Comment: 35 pages, 6 figures, 1 table, 3 appendices (book chapter
Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition
Mycobacterium tuberculosis (Mtb) is the leading infectious cause of death in humans. Synthesis of lipids critical for Mtb’s cell wall and virulence depends on phosphopantetheinyl transferase (PptT), an enzyme that transfers 4′-phosphopantetheine (Ppt) from coenzyme A (CoA) to diverse acyl carrier proteins. We identified a compound that kills Mtb by binding and partially inhibiting PptT. Killing of Mtb by the compound is potentiated by another enzyme encoded in the same operon, Ppt hydrolase (PptH), that undoes the PptT reaction. Thus, loss-of-function mutants of PptH displayed antimicrobial resistance. Our PptT-inhibitor cocrystal structure may aid further development of antimycobacterial agents against this long-sought target. The opposing reactions of PptT and PptH uncover a regulatory pathway in CoA physiology
Group IV Cytosolic Phospholipase A2 Binds with High Affinity and Specificity to Phosphatidylinositol 4,5-Bisphosphate Resulting in Dramatic Increases in Activity*
- …
