498 research outputs found
"Minesweeper" and spectrum of discrete Laplacians
The paper is devoted to a problem inspired by the "Minesweeper" computer
game. It is shown that certain configurations of open cells guarantee the
existence and the uniqueness of solution. Mathematically the problem is reduced
to some spectral properties of discrete differential operators. It is shown how
the uniqueness can be used to create a new game which preserves the spirit of
"Minesweeper" but does not require a computer.Comment: We add consideration of tables based on the triangle tiling of the
plane. Its paper version encounters situations typical for the computer
"Minesweeper" gam
Reconstruction of Random Colourings
Reconstruction problems have been studied in a number of contexts including
biology, information theory and and statistical physics. We consider the
reconstruction problem for random -colourings on the -ary tree for
large . Bhatnagar et. al. showed non-reconstruction when and reconstruction when . We tighten this result and show non-reconstruction when and reconstruction when .Comment: Added references, updated notatio
Minority Becomes Majority in Social Networks
It is often observed that agents tend to imitate the behavior of their
neighbors in a social network. This imitating behavior might lead to the
strategic decision of adopting a public behavior that differs from what the
agent believes is the right one and this can subvert the behavior of the
population as a whole.
In this paper, we consider the case in which agents express preferences over
two alternatives and model social pressure with the majority dynamics: at each
step an agent is selected and its preference is replaced by the majority of the
preferences of her neighbors. In case of a tie, the agent does not change her
current preference. A profile of the agents' preferences is stable if the
preference of each agent coincides with the preference of at least half of the
neighbors (thus, the system is in equilibrium).
We ask whether there are network topologies that are robust to social
pressure. That is, we ask if there are graphs in which the majority of
preferences in an initial profile always coincides with the majority of the
preference in all stable profiles reachable from that profile. We completely
characterize the graphs with this robustness property by showing that this is
possible only if the graph has no edge or is a clique or very close to a
clique. In other words, except for this handful of graphs, every graph admits
at least one initial profile of preferences in which the majority dynamics can
subvert the initial majority. We also show that deciding whether a graph admits
a minority that becomes majority is NP-hard when the minority size is at most
1/4-th of the social network size.Comment: To appear in WINE 201
Majority Dynamics and Aggregation of Information in Social Networks
Consider n individuals who, by popular vote, choose among q >= 2
alternatives, one of which is "better" than the others. Assume that each
individual votes independently at random, and that the probability of voting
for the better alternative is larger than the probability of voting for any
other. It follows from the law of large numbers that a plurality vote among the
n individuals would result in the correct outcome, with probability approaching
one exponentially quickly as n tends to infinity. Our interest in this paper is
in a variant of the process above where, after forming their initial opinions,
the voters update their decisions based on some interaction with their
neighbors in a social network. Our main example is "majority dynamics", in
which each voter adopts the most popular opinion among its friends. The
interaction repeats for some number of rounds and is then followed by a
population-wide plurality vote.
The question we tackle is that of "efficient aggregation of information": in
which cases is the better alternative chosen with probability approaching one
as n tends to infinity? Conversely, for which sequences of growing graphs does
aggregation fail, so that the wrong alternative gets chosen with probability
bounded away from zero? We construct a family of examples in which interaction
prevents efficient aggregation of information, and give a condition on the
social network which ensures that aggregation occurs. For the case of majority
dynamics we also investigate the question of unanimity in the limit. In
particular, if the voters' social network is an expander graph, we show that if
the initial population is sufficiently biased towards a particular alternative
then that alternative will eventually become the unanimous preference of the
entire population.Comment: 22 page
Harnessing the Bethe Free Energy
Gibbs measures induced by random factor graphs play a prominent role in computer science, combinatorics and physics. A key problem is to calculate the typical value of the partition function. According to the "replica symmetric cavity method", a heuristic that rests on non-rigorous considerations from statistical mechanics, in many cases this problem can be tackled by way of maximising a functional called the "Bethe free energy". In this paper we prove that the Bethe free energy upper-bounds the partition function in a broad class of models. Additionally, we provide a sufficient condition for this upper bound to be tight
Spatial Mixing of Coloring Random Graphs
We study the strong spatial mixing (decay of correlation) property of proper
-colorings of random graph with a fixed . The strong spatial
mixing of coloring and related models have been extensively studied on graphs
with bounded maximum degree. However, for typical classes of graphs with
bounded average degree, such as , an easy counterexample shows that
colorings do not exhibit strong spatial mixing with high probability.
Nevertheless, we show that for with and
sufficiently large , with high probability proper -colorings of
random graph exhibit strong spatial mixing with respect to an
arbitrarily fixed vertex. This is the first strong spatial mixing result for
colorings of graphs with unbounded maximum degree. Our analysis of strong
spatial mixing establishes a block-wise correlation decay instead of the
standard point-wise decay, which may be of interest by itself, especially for
graphs with unbounded degree
Quantum Algorithms for Learning and Testing Juntas
In this article we develop quantum algorithms for learning and testing
juntas, i.e. Boolean functions which depend only on an unknown set of k out of
n input variables. Our aim is to develop efficient algorithms:
- whose sample complexity has no dependence on n, the dimension of the domain
the Boolean functions are defined over;
- with no access to any classical or quantum membership ("black-box")
queries. Instead, our algorithms use only classical examples generated
uniformly at random and fixed quantum superpositions of such classical
examples;
- which require only a few quantum examples but possibly many classical
random examples (which are considered quite "cheap" relative to quantum
examples).
Our quantum algorithms are based on a subroutine FS which enables sampling
according to the Fourier spectrum of f; the FS subroutine was used in earlier
work of Bshouty and Jackson on quantum learning. Our results are as follows:
- We give an algorithm for testing k-juntas to accuracy that uses
quantum examples. This improves on the number of examples used
by the best known classical algorithm.
- We establish the following lower bound: any FS-based k-junta testing
algorithm requires queries.
- We give an algorithm for learning -juntas to accuracy that
uses quantum examples and
random examples. We show that this learning algorithms is close to optimal by
giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum
Information Processin
Circular Networks from Distorted Metrics
Trees have long been used as a graphical representation of species
relationships. However complex evolutionary events, such as genetic
reassortments or hybrid speciations which occur commonly in viruses, bacteria
and plants, do not fit into this elementary framework. Alternatively, various
network representations have been developed. Circular networks are a natural
generalization of leaf-labeled trees interpreted as split systems, that is,
collections of bipartitions over leaf labels corresponding to current species.
Although such networks do not explicitly model specific evolutionary events of
interest, their straightforward visualization and fast reconstruction have made
them a popular exploratory tool to detect network-like evolution in genetic
datasets.
Standard reconstruction methods for circular networks, such as Neighbor-Net,
rely on an associated metric on the species set. Such a metric is first
estimated from DNA sequences, which leads to a key difficulty: distantly
related sequences produce statistically unreliable estimates. This is
problematic for Neighbor-Net as it is based on the popular tree reconstruction
method Neighbor-Joining, whose sensitivity to distance estimation errors is
well established theoretically. In the tree case, more robust reconstruction
methods have been developed using the notion of a distorted metric, which
captures the dependence of the error in the distance through a radius of
accuracy. Here we design the first circular network reconstruction method based
on distorted metrics. Our method is computationally efficient. Moreover, the
analysis of its radius of accuracy highlights the important role played by the
maximum incompatibility, a measure of the extent to which the network differs
from a tree.Comment: Submitte
Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations
Cake cutting is one of the most fundamental settings in fair division and
mechanism design without money. In this paper, we consider different levels of
three fundamental goals in cake cutting: fairness, Pareto optimality, and
strategyproofness. In particular, we present robust versions of envy-freeness
and proportionality that are not only stronger than their standard
counter-parts but also have less information requirements. We then focus on
cake cutting with piecewise constant valuations and present three desirable
algorithms: CCEA (Controlled Cake Eating Algorithm), MEA (Market Equilibrium
Algorithm) and CSD (Constrained Serial Dictatorship). CCEA is polynomial-time,
robust envy-free, and non-wasteful. It relies on parametric network flows and
recent generalizations of the probabilistic serial algorithm. For the subdomain
of piecewise uniform valuations, we show that it is also group-strategyproof.
Then, we show that there exists an algorithm (MEA) that is polynomial-time,
envy-free, proportional, and Pareto optimal. MEA is based on computing a
market-based equilibrium via a convex program and relies on the results of
Reijnierse and Potters [24] and Devanur et al. [15]. Moreover, we show that MEA
and CCEA are equivalent to mechanism 1 of Chen et. al. [12] for piecewise
uniform valuations. We then present an algorithm CSD and a way to implement it
via randomization that satisfies strategyproofness in expectation, robust
proportionality, and unanimity for piecewise constant valuations. For the case
of two agents, it is robust envy-free, robust proportional, strategyproof, and
polynomial-time. Many of our results extend to more general settings in cake
cutting that allow for variable claims and initial endowments. We also show a
few impossibility results to complement our algorithms.Comment: 39 page
Coreness of Cooperative Games with Truncated Submodular Profit Functions
Coreness represents solution concepts related to core in cooperative games,
which captures the stability of players. Motivated by the scale effect in
social networks, economics and other scenario, we study the coreness of
cooperative game with truncated submodular profit functions. Specifically, the
profit function is defined by a truncation of a submodular function
: if and
otherwise, where is a given threshold. In this paper, we
study the core and three core-related concepts of truncated submodular profit
cooperative game. We first prove that whether core is empty can be decided in
polynomial time and an allocation in core also can be found in polynomial time
when core is not empty. When core is empty, we show hardness results and
approximation algorithms for computing other core-related concepts including
relative least-core value, absolute least-core value and least average
dissatisfaction value
- …
