1,192 research outputs found

    ALMA CO J=6-5 observations of IRAS16293-2422: Shocks and entrainment

    Full text link
    Observations of higher-excited transitions of abundant molecules such as CO are important for determining where energy in the form of shocks is fed back into the parental envelope of forming stars. The nearby prototypical and protobinary low-mass hot core, IRAS16293-2422 (I16293) is ideal for such a study. The source was targeted with ALMA for science verification purposes in band 9, which includes CO J=6-5 (E_up/k_B ~ 116 K), at an unprecedented spatial resolution (~0.2", 25 AU). I16293 itself is composed of two sources, A and B, with a projected distance of 5". CO J=6-5 emission is detected throughout the region, particularly in small, arcsecond-sized hotspots, where the outflow interacts with the envelope. The observations only recover a fraction of the emission in the line wings when compared to data from single-dish telescopes, with a higher fraction of emission recovered at higher velocities. The very high angular resolution of these new data reveal that a bow shock from source A coincides, in the plane of the sky, with the position of source B. Source B, on the other hand, does not show current outflow activity. In this region, outflow entrainment takes place over large spatial scales, >~ 100 AU, and in small discrete knots. This unique dataset shows that the combination of a high-temperature tracer (e.g., CO J=6-5) and very high angular resolution observations is crucial for interpreting the structure of the warm inner environment of low-mass protostars.Comment: Accepted for publication in A&A Letter

    Classifying the embedded young stellar population in Perseus and Taurus & the LOMASS database

    Get PDF
    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims. We aim to separate the truly embedded YSOs from more evolved sources. Methods. Maps of HCO+ J=4-3 and C18O J=3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize emission from high (column) density gas. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+ J=4-3 and 850 micron dust emission are used to classify the embedded nature of YSOs. Results. Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Conclusions. Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales of 0.38 Myr for the embedded phase.Comment: 33 pages, 21 figures, 6 tables, Accepted to be published in A&

    A safer place for patients: learning to improve patient safety

    Get PDF
    1 Every day over one million people are treated successfully by National Health Service (NHS) acute, ambulance and mental health trusts. However, healthcare relies on a range of complex interactions of people, skills, technologies and drugs, and sometimes things do go wrong. For most countries, patient safety is now the key issue in healthcare quality and risk management. The Department of Health (the Department) estimates that one in ten patients admitted to NHS hospitals will be unintentionally harmed, a rate similar to other developed countries. Around 50 per cent of these patient safety incidentsa could have been avoided, if only lessons from previous incidents had been learned. 2 There are numerous stakeholders with a role in keeping patients safe in the NHS, many of whom require trusts to report details of patient safety incidents and near misses to them (Figure 2). However, a number of previous National Audit Office reports have highlighted concerns that the NHS has limited information on the extent and impact of clinical and non-clinical incidents and trusts need to learn from these incidents and share good practice across the NHS more effectively (Appendix 1). 3 In 2000, the Chief Medical Officer’s report An organisation with a memory 1 , identified that the key barriers to reducing the number of patient safety incidents were an organisational culture that inhibited reporting and the lack of a cohesive national system for identifying and sharing lessons learnt. 4 In response, the Department published Building a safer NHS for patients3 detailing plans and a timetable for promoting patient safety. The goal was to encourage improvements in reporting and learning through the development of a new mandatory national reporting scheme for patient safety incidents and near misses. Central to the plan was establishing the National Patient Safety Agency to improve patient safety by reducing the risk of harm through error. The National Patient Safety Agency was expected to: collect and analyse information; assimilate other safety-related information from a variety of existing reporting systems; learn lessons and produce solutions. 5 We therefore examined whether the NHS has been successful in improving the patient safety culture, encouraging reporting and learning from patient safety incidents. Key parts of our approach were a census of 267 NHS acute, ambulance and mental health trusts in Autumn 2004, followed by a re-survey in August 2005 and an omnibus survey of patients (Appendix 2). We also reviewed practices in other industries (Appendix 3) and international healthcare systems (Appendix 4), and the National Patient Safety Agency’s progress in developing its National Reporting and Learning System (Appendix 5) and other related activities (Appendix 6). 6 An organisation with a memory1 was an important milestone in the NHS’s patient safety agenda and marked the drive to improve reporting and learning. At the local level the vast majority of trusts have developed a predominantly open and fair reporting culture but with pockets of blame and scope to improve their strategies for sharing good practice. Indeed in our re-survey we found that local performance had continued to improve with more trusts reporting having an open and fair reporting culture, more trusts with open reporting systems and improvements in perceptions of the levels of under-reporting. At the national level, progress on developing the national reporting system for learning has been slower than set out in the Department’s strategy of 2001 3 and there is a need to improve evaluation and sharing of lessons and solutions by all organisations with a stake in patient safety. There is also no clear system for monitoring that lessons are learned at the local level. Specifically: a The safety culture within trusts is improving, driven largely by the Department’s clinical governance initiative 4 and the development of more effective risk management systems in response to incentives under initiatives such as the NHS Litigation Authority’s Clinical Negligence Scheme for Trusts (Appendix 7). However, trusts are still predominantly reactive in their response to patient safety issues and parts of some organisations still operate a blame culture. b All trusts have established effective reporting systems at the local level, although under-reporting remains a problem within some groups of staff, types of incidents and near misses. The National Patient Safety Agency did not develop and roll out the National Reporting and Learning System by December 2002 as originally envisaged. All trusts were linked to the system by 31 December 2004. By August 2005, at least 35 trusts still had not submitted any data to the National Reporting and Learning System. c Most trusts pointed to specific improvements derived from lessons learnt from their local incident reporting systems, but these are still not widely promulgated, either within or between trusts. The National Patient Safety Agency has provided only limited feedback to trusts of evidence-based solutions or actions derived from the national reporting system. It published its first feedback report from the Patient Safety Observatory in July 2005

    Outflow forces of low mass embedded objects in Ophiuchus: a quantitative comparison of analysis methods

    Get PDF
    The outflow force of molecular bipolar outflows is a key parameter in theories of young stellar feedback on their surroundings. The focus of many outflow studies is the correlation between the outflow force, bolometric luminosity and envelope mass. However, it is difficult to combine the results of different studies in large evolutionary plots over many orders of magnitude due to the range of data quality, analysis methods and corrections for observational effects such as opacity and inclination. We aim to determine the outflow force for a sample of low luminosity embedded sources. We will quantify the influence of the analysis method and the assumptions entering the calculation of the outflow force. We use the James Clerk Maxwell Telescope to map 12CO J=3-2 over 2'x2' regions around 16 Class I sources of a well-defined sample in Ophiuchus at 15" resolution. The outflow force is then calculated using seven different methods differing e.g. in the use of intensity-weighted emission and correction factors for inclination. The results from the analysis methods differ from each other by up to a factor of 6, whereas observational properties and choices in the analysis procedure affect the outflow force by up to a factor of 4. For the sample of Class I objects, bipolar outflows are detected around 13 sources including 5 new detections, where the three non-detections are confused by nearby outflows from other sources. When combining outflow forces from different studies, a scatter by up to a factor of 5 can be expected. Although the true outflow force remains unknown, the separation method (separate calculation of dynamical time and momentum) is least affected by the uncertain observational parameters. The correlations between outflow force, bolometric luminosity and envelope mass are further confirmed down to low luminosity sources.Comment: 24 pages, 13 figures, Accepted by A&

    Response of beam-to-column web cleated joints for FRP pultruded members

    Get PDF
    Physical testing is used to characterize the structural properties of beam-to-column joints, comprising pultruded fiber-reinforced polymer (FRP) H-shapes of depth 203 mm, connected by 128 mm-long web cleats and two M16 bolts per leg. Testing is performed on two batches of nominally identical specimens. One batch had web cleats of pultruded FRP and the other had structural steel. The structural behavior of the joints is based on their moment-rotation responses, failure modes, and serviceability vertical deflection limits. Joints with FRP cleats failed by delamination cracking at the top of the cleats, and when the cleats were of steel, the FRP failure occurred inside the column members. Neither failure mode is reported in the design manuals from pultruders. At the onset of the FRP damage, it was found that the steel joints were twice as stiff as the FRP joints. On the basis of a characteristic (damage) rotation, calculated in accordance with Eurocode 0, the serviceability deflection limits are established to be span/300 and span/650 for the joints with FRP and steel cleats, respectively. This finding suggests that appropriate deflection limits, in relation to cleated connections, should be proposed in manufactures’ design manuals and relative design standards and design codes. Failure to address the serviceability, by the engineer of record, could lead to unreliable designs

    Water distribution in shocked regions of the NGC1333-IRAS4A protostellar outflow

    Get PDF
    We present the study of the H2O spatial distribution at two bright shocked regions along IRAS4A, one of the strongest H2O emitters among the Class 0 outflows. We obtained Herschel-PACS maps of the IRAS4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38 arcsec at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. We detect four H2O lines and CO (16-15) at the two selected positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the excitation analysis of the H2O emission suggests that the compact (about 3 arcsec) component is associated with a hot (T~1000 K) gas with densities ~(1-4)x10^5 cm^{-3}, whereas the extended one (10-17 arcsec) traces a warm (T~300-500 K) and dense gas (~(3-5)x10^7 cm^{-3}). Finally, using the CO (16-15) emission observed at R2, we estimate the H2O/H2 abundance of the warm and hot components to be (7-10)x10^{-7} and (3-7)x10^{-5}. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.Comment: 13 pages, 11 figures. Accepted for publication in Astronomy and Astrophysic

    Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B

    Get PDF
    Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, to compare their HDO abundance distribution with other star-forming regions, and to constrain their HDO/H2O ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component and a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11}, respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10}, respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.Comment: 16 pages, 13 figure

    The circumburst environment of a FRED GRB: study of the prompt emission and X-ray/optical afterglow of GRB 051111

    Get PDF
    We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB051111 and discuss its properties in the context of current fireball models. The detection of GRB051111 by the Burst Alert Telescope on-board Swift triggered early BVRi' observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. The prompt gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with alpha_1=0.35 to alpha_2=1.35 and a break time around 12 minutes after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some alpha elements such as oxygen, [O/Zn]=0.7+/-0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 minutes after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium.Comment: accepted to A&A on Nov. 10 (14 pages, 8 figures

    Shockingly low water abundances in Herschel / PACS observations of low-mass protostars in Perseus

    Get PDF
    Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy' survey. Line emission from H2_\mathrm{2}O, CO, and OH is tested against shock models from the literature. Observed line ratios are remarkably similar and do not show variations with source physical parameters. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H2_\mathrm{2}O lines provide a particularly good diagnostic of pre-shock gas densities, nH105n_\mathrm{H}\sim10^{5} cm3^{-3}, in agreement with typical densities obtained from observations of the post-shock gas. The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km\,s1^{-1}. However, the observations consistently show one-to-two orders of magnitude lower H2_\mathrm{2}O-to-CO and H2_\mathrm{2}O-to-OH line ratios than predicted by the existing shock models. The overestimated model H2_\mathrm{2}O fluxes are most likely caused by an overabundance of H2_\mathrm{2}O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H2_\mathrm{2}O abundances and reconcile the models with observations. Detections of hot H2_\mathrm{2}O and strong OH lines support this scenario.Comment: 28 pages, 12 figures, accepted to Astronomy & Astrophysic
    corecore