808 research outputs found

    Domain wall motion in thin ferromagnetic nanotubes: Analytic results

    Get PDF
    Dynamics of magnetization domain walls (DWs) in thin ferromagnetic nanotubes subject to weak longitudinal external fields is addressed analytically in the regimes of strong and weak penalization. Exact solutions for the DW profiles and formulas for the DW propagation velocity are derived in both regimes. In particular, the DW speed is shown to depend nonlinearly on the nanotube radius

    Domain wall structure in magnetic bilayers with perpendicular anisotropy

    Full text link
    We study the magnetic domain wall structure in magnetic bilayers (two ultrathin ferromagnetic layers separated by a non magnetic spacer) with perpendicular magnetization. Combining magnetic force and ballistic electron emission microscopies, we are able to reveal the details of the magnetic structure of the wall with a high spatial accuracy. In these layers, we show that the classical Bloch wall observed in single layers transforms into superposed N\'eel walls due to the magnetic coupling between the ferromagnetic layers. Quantitative agreement with micromagnetic calculations is achieved.Comment: Author adresses AB, SR, JM and AT: Laboratoire de Physique des Solides, CNRS, Universit\'e Paris Sud, UMR 8502, 91405 Orsay Cedex, France ML : Laboratoire PMTM, Institut Galil\'ee, CNRS, Universit\'e Paris-13, UPR 9001, 93430 Villetaneuse, Franc

    Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco)

    No full text
    Attention has been focused recently on the use of Moroccan black oil shale as the raw material for production of a new type of adsorbent and its application to U and Th removal from contaminated wastewaters. The purpose of the present work is to provide a better understanding of the composition and structure of this shale and to determine its natural content in uranium and thorium. A black shale collected from Timahdit (Morocco) was analyzed by powder X-ray diffraction and SEM techniques. It was found that calcite, dolomite, quartz and clays constitute the main composition of the inorganic matrix. Pyrite crystals are also present. A selective leaching procedure, followed by radiochemical purification and α-counting, was performed to assess the distribution of naturally occurring radionuclides. Leaching results indicate that 238U, 235U, 234U, 232Th, 230Th and 228Th have multiple modes of occurrence in the shale. U is interpreted to have been concentrated under anaerobic conditions. An integrated isotopic approach showed the preferential mobilization of uranium carried by humic acids to carbonate and apatite phases. Th is partitioned between silicate minerals and pyrite

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Photovoltaic response around a unique180° ferroelectric domain wall in single crystalline BiFeO3

    Get PDF
    Using an experimental setup designed to scan a submicron sized light spot and collect the photogenerated current through larger electrodes, we map the photovoltaic response in ferroelectric BiFeO3 single crystals. We study the effect produced by a unique 180° ferroelectric domain wall (DW) and show that the photocurrent maps are significantly affected by its presence and shape. The effect is large in its vicinity and in the Schottky barriers at the interface with the Au electrodes, but no extra photocurrent is observed when the illuminating spot touches the DW, indicating that this particular entity is not the heart of specific photo-electric properties. Using 3D modelling, we argue that the measured effect is due to the spatial distribution of internal fields which are significantly affected by the charge of the DW due to its distortion

    Imaging gray matter with concomitant null point imaging from the phase sensitive inversion recovery sequence

    Get PDF
    Purpose To present an improved three-dimensional (3D) interleaved phase sensitive inversion recovery (PSIR) sequence including a concomitantly acquired new contrast, null point imaging (NPI), to help detect and classify abnormalities in cortical gray matter. Methods The 3D gradient echo PSIR images were acquired at 0.6 mm isotropic resolution on 11 multiple sclerosis (MS) patients and 9 controls subjects using a 7 Tesla (T) MRI scanner, and 2 MS patients at 3T. Cortical abnormalities were delineated on the NPI/PSIR data and later classified according to position in the cortex. Results The NPI helped detect cortical lesions within the cortical ribbon with increased, positive contrast compared with the PSIR. It also provided improved intrinsic delineation of the ribbon, increasing confidence in classifying the lesions' locations. Conclusion The proposed PSIR facilitates the classification of cortical lesions by providing two T1-weighted 3D datasets with isotropic resolution, including the NPI showing cortical lesions with clear delineation of the gray/white matter boundary and minimal partial volume effects. Magn Reson Med 76:1512–1516, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Relationships between cortical myeloarchitecture and electrophysiological networks

    Get PDF
    The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology

    Magnetic reversal in ion-irradiated FePt thin films

    Get PDF
    International audiencePrevious work on ion irradiation control of FePt thin films magnetic anisotropy is extended to ultrathin films (2-10nm). The effects of 30keV He ion irradiation on the magnetic properties are explored as a function of ion fluence and film thickness. Depending on their growth conditions, the thinnest films exhibit different magnetic properties. Although this affects their final magnetic behaviour, we show that after irradiation at 300 @BULLET C the easy magnetization axis may rotate entirely from inplane to out-of-plane at very low fluences, e.g. 2×10 13 He + /cm 2 on 5 nm thick film. This demonstrates the extreme sensitivity of the magnetic anisotropy to ion-induced local L1 0 ordering. Under these conditions, ultrathin films may exhibit perfectly square hysteresis loops with 100% remnant magnetization and low coercivity

    Construction of a Tethered Poly(ethylene glycol) Surface Gradient For Studies of Cell Adhesion Kinetics

    Get PDF
    Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating spatial gradients in surface chemistry that does not require special instrumentation or microfabrication procedures. The structure and spatial distribution of the PEG gradient are evaluated via ellipsometry and atomic force microscopy. A cell adhesion assay using bovine arteriole endothelium cells is used to study the influence of PEG thickness and chain density on biocompatibility. The kinetics of cell adhesion are quantified as a function of the thickness of the PEG layer. Results depict a surface in which the variation in layer thickness along the PEG gradient strongly modifies the biological response
    corecore