12,005 research outputs found
Toward Guaranteed Illumination Models for Non-Convex Objects
Illumination variation remains a central challenge in object detection and
recognition. Existing analyses of illumination variation typically pertain to
convex, Lambertian objects, and guarantee quality of approximation in an
average case sense. We show that it is possible to build V(vertex)-description
convex cone models with worst-case performance guarantees, for non-convex
Lambertian objects. Namely, a natural verification test based on the angle to
the constructed cone guarantees to accept any image which is sufficiently
well-approximated by an image of the object under some admissible lighting
condition, and guarantees to reject any image that does not have a sufficiently
good approximation. The cone models are generated by sampling point
illuminations with sufficient density, which follows from a new perturbation
bound for point images in the Lambertian model. As the number of point images
required for guaranteed verification may be large, we introduce a new
formulation for cone preserving dimensionality reduction, which leverages tools
from sparse and low-rank decomposition to reduce the complexity, while
controlling the approximation error with respect to the original cone
Macroscopical Entangled Coherent State Generator in V configuration atom system
In this paper, we propose a scheme to produce pure and macroscopical
entangled coherent state. When a three-level ''V'' configuration atom interacts
with a doubly reasonant cavity, under the strong classical driven condition,
entangled coherent state can be generated from vacuum fields. An analytical
solution for this system under the presence of cavity losses is also given
Minimal sets determining universal and phase-covariant quantum cloning
We study the minimal input sets which can determine completely the universal
and the phase-covariant quantum cloning machines. We find that the universal
quantum cloning machine, which can copy arbitrary input qubit equally well,
however can be determined completely by only four input states located at the
four vertices of a tetrahedron. The phase-covariant quantum cloning machine,
which can copy all qubits located on the equator of the Bloch sphere, can be
determined by three equatorial qubits with equal angular distance. These
results sharpen further the well-known results that BB84 states and six-states
used in quantum cryptography can determine completely the phase-covariant and
universal quantum cloning machines. This concludes the study of the power of
universal and phase-covariant quantum cloning, i.e., from minimal input sets
necessarily to full input sets by definition. This can simplify dramatically
the testing of whether the quantum clone machines are successful or not, we
only need to check that the minimal input sets can be cloned optimally.Comment: 7 pages, 4 figure
Recommended from our members
Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity.
TMEM16F is activated by elevated intracellular Ca2+, and functions as a small-conductance ion channel and as a phospholipid scramblase. In contrast to its paralogs, the TMEM16A/B calcium-activated chloride channels, mouse TMEM16F has been reported as a cation-, anion-, or non-selective ion channel, without a definite conclusion. Starting with the Q559K mutant that shows no current rundown and less outward rectification in excised patch, we found that the channel shifted its ion selectivity in response to the change of intracellular Ca2+ concentration, with an increased permeability ratio of Cl- to Na+ (PCl-/PNa+) at a higher Ca2+ level. The gradual shift of relative ion permeability did not correlate with the channel activation state. Instead, it was indicative of an alteration of electrostatic field in the permeation pathway. The dynamic change of ion selectivity suggests a charge-screening mechanism for TMEM16F ion conduction, and it provides hints to further studies of TMEM16F physiological functions
Transition of stoichiometricSr2VO3FeAs to a superconducting state at 37.2 K
The superconductor Sr4V2O6Fe2As2 with transition temperature at 37.2 K has
been fabricated. It has a layered structure with the space group of p4/nmm, and
with the lattice constants a = 3.9296Aand c = 15.6732A. The observed large
diamagnetization signal and zero-resistance demonstrated the bulk
superconductivity. The broadening of resistive transition was measured under
different magnetic fields leading to the discovery of a rather high upper
critical field. The results also suggest a large vortex liquid region which
reflects high anisotropy of the system. The Hall effect measurements revealed
dominantly electron-like charge carriers in this material. The
superconductivity in the present system may be induced by oxygen deficiency or
the multiple valence states of vanadium.Comment: 5 pages, 4 figure
Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase
Superconductivity at about 15.6 K was achieved in Tb_{1-x}Ca_xFeAsO by
partially substituting Tb^{3+} with Ca^{2+} in the nominal doping region x =
0.40 \sim 0.50. A detailed investigation was carried out in a typical sample
with doping level of x = 0.44. The upper critical field of this sample was
estimated to be 77 Tesla from the magnetic field dependent resistivity data.
The domination of hole-like charge carriers in the low-temperature region was
confirmed by Hall effect measurements. The comparison between the calcium-doped
sample Pr_{1-x}Ca_xFeAsO (non-superconductive) and the Strontium-doped sample
Pr_{1-x}Sr_xFeAsO (superconductive) suggests that a lager ion radius of the
doped alkaline-earth element compared with that of the rare-earth element may
be a necessary requirement for achieving superconductivity in the hole-doped
1111 phase.Comment: 7 pages, 7 figure
Superconductivity induced by doping Platinum in BaFe2As2
By substituting Fe with the 5d-transition metal Pt in BaFe2As2, we have
successfully synthesized the superconductors BaFe2-xPtxAs2. The systematic
evolution of the lattice constants indicates that the Fe ions were successfully
replaced by Pt ions. By increasing the doping content of Pt, the
antiferromagnetic order and structural transition of the parent phase is
suppressed and superconductivity emerges at a doping level of about x = 0.02.
At a doping level of x = 0.1, we get a maximum transition temperature Tc of
about 25 K. The synchrotron powder x-ray diffraction shows that the resistivity
anomaly is in good agreement with the structural transition. The
superconducting transitions at different magnetic fields were also measured at
the doping level of about x = 0.1, yielding a slope of -dHc2/dT = 5.4 T/K near
Tc. A phase diagram was established for the Pt doped 122 system. Our results
suggest that superconductivity can also be easily induced in the FeAs family by
substituting the Fe with Pt, with almost the similar maximum transition
temperatures as doping Ni, Co, Rh and Ir.Comment: 6 pages, 5 figure
- …
