365 research outputs found

    First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction

    Full text link
    The first measurements of the transferred polarization for the exclusive ep --> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron beam was used to measure the hyperon polarization over a range of Q2 from 0.3 to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass angular range of the K+ meson. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A non-relativistic quark model interpretation of our data suggests that the s-sbar quark pair is produced with spins predominantly anti-aligned. Implications for the validity of the widely used 3P0 quark-pair creation operator are discussed.Comment: 6 pages, 4 figure

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for p(e,ep)πop(\vec{e},e'p)\pi^o in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} has been measured in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. Data for the p(e,ep)πop(\vec e,e'p)\pi^o reaction were taken at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. For the first time a complete angular distribution was measured, permitting the separation of different non-resonant amplitudes using a partial wave analysis. Comparison with previous beam asymmetry measurements at MAMI indicate a deviation from the predicted Q2Q^2 dependence of σLT\sigma_{LT^{\prime}} using recent phenomenological models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid Communications. Version 2 has revised Q^2 analysi

    Observation of Nuclear Scaling in the A(e,e)A(e,e^{\prime}) Reaction at xB>x_B>1

    Full text link
    The ratios of inclusive electron scattering cross sections of 4^4He, 12^{12}C, and 56^{56}Fe to 3^3He have been measured for the first time. It is shown that these ratios are independent of xBx_B at Q2>^2>1.4 (GeV/c)2^2 for xB>x_B> 1.5 where the inclusive cross section depends primarily on the high-momentum components of the nuclear wave function. The observed scaling shows that the momentum distributions at high-momenta have the same shape for all nuclei and differ only by a scale factor. The observed onset of the scaling at Q2>^2>1.4 and xB>x_B >1.5 is consistent with the kinematical expectation that two nucleon short range correlations (SRC) are dominate the nuclear wave function at pmp_m\gtrsim 300 MeV/c. The values of these ratios in the scaling region can be related to the relative probabilities of SRC in nuclei with A\ge3. Our data demonstrate that for nuclei with A\geq12 these probabilities are 5-5.5 times larger than in deuterium, while for 4^4He it is larger by a factor of about 3.5.Comment: 11 pages, 10 figure

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems

    Optimal Glycated Hemoglobin Cutoff for Diagnosis of Diabetes and Prediabetes in Chinese Breast Cancer Women

    Get PDF
    Xin-Yu Liang,1,&ast; Li-yuan Mu,1,&ast; Lei Hu,2,&ast; Rui-ling She,1,&ast; Chen-yu Ma,1,&ast; Jun-han Feng,1,&ast; Zhi-yu Jiang,1 Zhao-xing Li,1 Xiu-quan Qu,1 Bai-qing Peng,1 Kai-nan Wu,1 Ling-quan Kong1 1Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 2Information Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China&ast;These authors contributed equally to this workCorrespondence: Ling-quan Kong, Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel +8613101380893, Email [email protected]: Glycated hemoglobin (HbA1c) is widely used in diabetes management and now recommended for diagnosis and risk assessment. Our research focused on investigating the optimal cutoff points of HbA1c for diagnosis of diabetes and prediabetes in Chinese breast cancer women, aiming to enhance early detection and tailor treatment strategies.Patients and Methods: This study involved 309 breast cancer women without diabetes history in China. Patients were categorized into groups of newly diagnosed diabetes, prediabetes, and normal glucose tolerance using oral glucose tolerance test (OGTT) according to the 2010 ADA criteria. HbA1c data were collected from all patients. Receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the HbA1c screening.Results: Among the 309 breast cancer women without diabetes history, 96 (31.0%) were identified with diabetes and 130 (42.1%) had prediabetes according to OGTT, and the incidence of normal glucose tolerance was only 26.9% (83). ROC curve analysis, using OGTT as a reference, revealed that the area under the curve of 0.903 (P< 0.001, 95% CI, 0.867– 0.938) for HbA1c alone, indicating high accuracy. The optimal HbA1c cutoff for identifying diabetes was determined to be 6.0%, with a sensitivity of 78.1% and specificity of 86.4%. For prediabetes, the ROC curve for HbA1c alone showed that the area under the ROC curve of 0.703 (P< 0.001, 95% CI, 0.632– 0.774), with an optimal cutoff of 5.5% (sensitivity of 76.9% and specificity of 51.8%).Conclusion: The prevalence of undiagnosed diabetes is very high in breast cancer women without diabetes history in China. The optimal cutoff points of HbA1c for identifying diabetes and prediabetes are 6.0% and 5.5% in Chinese breast cancer women, respectively.Keywords: breast cancer, diabetes, HbA1c, prediabete

    Dehydroepiandrosterone suppresses human colorectal cancer progression through ER stress-mediated autophagy and apoptosis in a p53-independent manner

    Get PDF
    Colorectal cancer (CRC) is one of the primary contributors to cancer-related fatalities, with up to 80% of advanced CRC cases exhibiting mutations in the p53 gene. Unfortunately, the development of new compounds targeting mutant p53 is quite limited. The anticancer effects of Dehydroepiandrosterone (DHEA) on various cancers have been reported. However, the suppressive effect of DHEA on CRC cells harboring wild-type or mutant p53 gene remains controversial. This study emphasized revealing the suppressive mechanism and the effect of DHEA on CRC cell tumorigenesis in the presence of wild-type or mutant p53 gene. We demonstrate that DHEA causes CRC cell death and cell cycle arrest in a dose and time-dependent manner. Notably, DHEA exhibits similar inhibitory effects on CRC cells regardless of the p53 gene status. Further study reveals that DHEA induces endoplasmic reticulum (ER) stress and triggers PERK/eIF2/ATF4/CHOP UPR signaling pathway to activate autophagy followed by apoptosis, which was confirmed by suppression of 4-phenylbutyric acid (an ER stress inhibitor) or knockdown either ATF4 or CHOP. DHEA-induced apoptosis was attenuated by silencing ATG5 gene in either p53+/+ or p53−/− CRC cells, indicating autophagy regulation of apoptosis. Furthermore, DHEA treatment accompanied by bafilomycin A1 (a blocker of autophagosome degradation) leads to the accumulation of ATF4, CHOP, DR5, and p21 levels in CRC cells, implying that the degradative autophagy machinery regulates these four molecules. Consistently, DHEA demonstrates its inhibitory effect by suppressing CRC tumor formation in vivo. Altogether, we provide compelling evidence that DHEA is a potential therapeutic candidate for CRC patient treatment regardless of the p53 status through ER stress-PERK-autophagy-apoptosis axis

    Skeletal Plasmacytoma: Progression of disease and impact of local treatment; an analysis of SEER database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports suggest an as yet unidentifiable subset of patients with plasmacytoma will progress to myeloma. The current study sought to establish the risk of developing myeloma and determine the prognostic factors affecting the progression of disease.</p> <p>Methods</p> <p>Patients with plasmacytoma diagnosed between 1973 and 2005 were identified in the SEER database(1164 patients). Patient demographics and clinical characteristics, treatment(s), cause of death, and survival were extracted. Kaplan-Meier, log-rank, and Cox regression were used to analyze prognostic factors.</p> <p>Results</p> <p>The five year survival among patients initially diagnosed with plasmacytoma that later progressed to multiple myeloma and those initially diagnosed with multiple myeloma were almost identical (25% and 23%; respectively). Five year survival for patients with plasmacytoma that did not progress to multiple myeloma was significantly better (72%). Age > 60 years was the only factor that correlated with progression of disease (p = 0.027).</p> <p>Discussion</p> <p>Plasmacytoma consists of two cohorts of patients with different overall survival; those patients that do not progress to systemic disease and those that develop myeloma. Age > 60 years is associated with disease progression. Identifying patients with systemic disease early in the treatment will permit aggressive and novel treatment strategies to be implemented.</p

    Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    Get PDF
    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors
    corecore