237 research outputs found

    Spike-Timing Dependent Plasticity Beyond Synapse – Pre- and Post-Synaptic Plasticity of Intrinsic Neuronal Excitability

    Get PDF
    Long-lasting plasticity of synaptic transmission is classically thought to be the cellular substrate for information storage in the brain. Recent data indicate however that it is not the whole story and persistent changes in the intrinsic neuronal excitability have been shown to occur in parallel to the induction of long-term synaptic modifications. This form of plasticity depends on the regulation of voltage-gated ion channels. Here we review the experimental evidence for plasticity of neuronal excitability induced at pre- or postsynaptic sites when long-term plasticity of synaptic transmission is induced with Spike-Timing Dependent Plasticity (STDP) protocols. We describe the induction and expression mechanisms of the induced changes in excitability. Finally, the functional synergy between synaptic and non-synaptic plasticity and their spatial extent are discussed

    Global enhancement of cortical excitability following coactivation of large neuronal populations

    Get PDF
    Correlated activation of cortical neurons often occurs in the brain and repetitive correlated neuronal firing could cause long-term modifications of synaptic efficacy and intrinsic excitability. We found that repetitive optogenetic activation of neuronal populations in the mouse cortex caused enhancement of optogenetically evoked firing of local coactivated neurons as well as distant cortical neurons in both ipsilateral and contralateral hemispheres. This global enhancement of evoked responses required coactivation of a sufficiently large population of neurons either within one cortical area or distributed in several areas. Enhancement of neuronal firing was saturable after repeated episodes of coactivation, diminished by inhibition of N-methyl-D-aspartic acid receptors, and accompanied by elevated excitatory postsynaptic potentials, all consistent with activity-induced synaptic potentiation. Chemogenetic inhibition of neuronal activity of the thalamus decreased the enhancement effect, suggesting thalamic involvement. Thus, correlated excitation of large neuronal populations leads to global enhancement of neuronal excitability

    Global enhancement of cortical excitability following coactivation of large neuronal populations

    Get PDF
    Correlated activation of cortical neurons often occurs in the brain and repetitive correlated neuronal firing could cause long-term modifications of synaptic efficacy and intrinsic excitability. We found that repetitive optogenetic activation of neuronal populations in the mouse cortex caused enhancement of optogenetically evoked firing of local coactivated neurons as well as distant cortical neurons in both ipsilateral and contralateral hemispheres. This global enhancement of evoked responses required coactivation of a sufficiently large population of neurons either within one cortical area or distributed in several areas. Enhancement of neuronal firing was saturable after repeated episodes of coactivation, diminished by inhibition of N-methyl-D-aspartic acid receptors, and accompanied by elevated excitatory postsynaptic potentials, all consistent with activity-induced synaptic potentiation. Chemogenetic inhibition of neuronal activity of the thalamus decreased the enhancement effect, suggesting thalamic involvement. Thus, correlated excitation of large neuronal populations leads to global enhancement of neuronal excitability

    Visualizing advances in the future of primate neuroscience research

    Get PDF
    Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research

    What is memory? The present state of the engram

    Get PDF
    The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today

    Computational neuroscience: a frontier of the 21st century

    Get PDF
    The human brain is a biological organ, weighing about three pounds or 1.4 kg, that determines our behaviors, thoughts, emotions and consciousness. Although comprising only 2% of the total body weight, the brain consumes about 20% of the oxygen entering the body. With the expensive energy demand, the brain enables us to perceive and act upon the external world, as well as reflect on our internal thoughts and feelings. The brain is actually never at ‘rest’. Brain activities continue around the clock, ranging from functions enabling human–environment interactions to housekeeping during sleep, including processes such as synaptic homeostasis and memory formation. Whereas one could argue that sciences in the last century were dominated by physics and molecular biology, in the current century one of our major challenges is to elucidate how the brain works. A full understanding of brain functions and malfunctions is likely the most demanding task we will ever have

    Computational neuroscience: a frontier of the 21st century

    Get PDF
    The human brain is a biological organ, weighing about three pounds or 1.4 kg, that determines our behaviors, thoughts, emotions and consciousness. Although comprising only 2% of the total body weight, the brain consumes about 20% of the oxygen entering the body. With the expensive energy demand, the brain enables us to perceive and act upon the external world, as well as reflect on our internal thoughts and feelings. The brain is actually never at ‘rest’. Brain activities continue around the clock, ranging from functions enabling human–environment interactions to housekeeping during sleep, including processes such as synaptic homeostasis and memory formation. Whereas one could argue that sciences in the last century were dominated by physics and molecular biology, in the current century one of our major challenges is to elucidate how the brain works. A full understanding of brain functions and malfunctions is likely the most demanding task we will ever have

    Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments

    Get PDF
    Spatial patterning of proteins is a valuable technique for many biological applications and is the prevailing tool for defining microenvironments for cells in culture, a required procedure in developmental biology and tissue engineering research. However, it is still challenging to achieve protein patterns that closely mimic native microenvironments, such as gradient protein distributions with desirable mechanical properties. By combining projection dynamic mask lithography and protein engineering with non-canonical photosensitive amino acids, we demonstrate a simple, scalable strategy to fabricate any user-defined 2D or 3D stable gradient pattern with complex geometries from an artificial extracellular matrix (aECM) protein. We show that the elastic modulus and chemical nature of the gradient profile are biocompatible and allow useful applications in cell biological research

    EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex

    Full text link
    Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear. Here, we demonstrate that in mice on the C57Bl/6 background EMX1 plays an essential role in the midline crossing of an axonal subpopulation of the corpus callosum derived from the anterior cingulate cortex. In the absence of EMX1, cingulate axons display reduced expression of the axon guidance receptor NRP1 and form aberrant axonal bundles within the rostral corpus callosum. EMX1 also functions as a transcriptional activator of Nrp1 expression in vitro, and overexpression of this protein in Emx1 knockout mice rescues the midline-crossing phenotype. These findings reveal a novel role for the EMX1 transcription factor in establishing cortical connectivity by regulating the interhemispheric wiring of a subpopulation of neurons within the mouse anterior cingulate cortex.</jats:p
    corecore