4,503 research outputs found
The Regge Limit for Green Functions in Conformal Field Theory
We define a Regge limit for off-shell Green functions in quantum field
theory, and study it in the particular case of conformal field theories (CFT).
Our limit differs from that defined in arXiv:0801.3002, the latter being only a
particular corner of the Regge regime. By studying the limit for free CFTs, we
are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak
coupling. The dominance of Feynman graphs where only two high momentum lines
are exchanged in the t-channel, follows simply from the free field analysis. We
can then define the BFKL kernel in terms of the two point function of a simple
light-like bilocal operator. We also include a brief discussion of the gravity
dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit
defined here and previous work in CFT. Clarification of causal orderings in
the limit. References adde
Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions
Light-emitting diodes are of importance for lighting, displays, optical
interconnects, logic and sensors. Hence the development of new systems that
allow improvements in their efficiency, spectral properties, compactness and
integrability could have significant ramifications. Monolayer transition metal
dichalcogenides have recently emerged as interesting candidates for
optoelectronic applications due to their unique optical properties.
Electroluminescence has already been observed from monolayer MoS2 devices.
However, the electroluminescence efficiency was low and the linewidth broad due
both to the poor optical quality of MoS2 and to ineffective contacts. Here, we
report electroluminescence from lateral p-n junctions in monolayer WSe2 induced
electrostatically using a thin boron nitride support as a dielectric layer with
multiple metal gates beneath. This structure allows effective injection of
electrons and holes, and combined with the high optical quality of WSe2 it
yields bright electroluminescence with 1000 times smaller injection current and
10 times smaller linewidth than in MoS2. Furthermore, by increasing the
injection bias we can tune the electroluminescence between regimes of
impurity-bound, charged, and neutral excitons. This system has the required
ingredients for new kinds of optoelectronic devices such as spin- and
valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional
electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material
Recommended from our members
Effects of temperature, total dissolved solids, and total suspended solids on survival and development rate of larval Arkansas River shiner
Abstract
Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies.</jats:p
HER2 testing in breast cancer: Opportunities and challenges
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results
Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1
Background:
Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD.
Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked.
Conclusions/Significance:
These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications
Recommended from our members
On the challenges and opportunities in visualization for machine learning and knowledge extraction: A research agenda
We describe a selection of challenges at the intersection of machine learning and data visualization and outline a subjective research agenda based on professional and personal experience. The unprecedented increase in the amount, variety and the value of data has been significantly transforming the way that scientific research is carried out and businesses operate. Within data science, which has emerged as a practice to enable this data-intensive innovation by gathering together and advancing the knowledge from fields such as statistics, machine learning, knowledge extraction, data management, and visualization, visualization plays a unique and maybe the ultimate role as an approach to facilitate the human and computer cooperation, and to particularly enable the analysis of diverse and heterogeneous data using complex computational methods where algorithmic results are challenging to interpret and operationalize. Whilst algorithm development is surely at the center of the whole pipeline in disciplines such as Machine Learning and Knowledge Discovery, it is visualization which ultimately makes the results accessible to the end user. Visualization thus can be seen as a mapping from arbitrarily high-dimensional abstract spaces to the lower dimensions and plays a central and critical role in interacting with machine learning algorithms, and particularly in interactive machine learning (iML) with including the human-in-the-loop. The central goal of the CD-MAKE VIS workshop is to spark discussions at this intersection of visualization, machine learning and knowledge discovery and bring together experts from these disciplines. This paper discusses a perspective on the challenges and opportunities in this integration of these discipline and presents a number of directions and strategies for further research
Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande
We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
- …
