92 research outputs found
Outgassing of Ordinary Chondritic Material and Some of its Implications for the Chemistry of Asteroids, Planets, and Satellites
We used chemical equilibrium calculations to model thermal outgassing of
ordinary chondritic material as a function of temperature, pressure, and bulk
compositions and use our results to discuss outgassing on asteroids and the
early Earth. The calculations include ~1,000 solids and gases of the elements
Al, C, Ca, Cl, Co, Cr, F, Fe, H, K, Mg, Mn, N, Na, Ni, O, P, S, Si, and Ti. The
major outgassed volatiles from ordinary chondritic material are CH4, H2, H2O,
N2, and NH3(the latter at conditions where hydrous minerals form). Contrary to
widely held assumptions, CO is never the major C-bearing gas during ordinary
chondrite metamorphism. The calculated oxygen fugacity (partial pressure) of
ordinary chondritic material is close to that of the quartz-fayalite-iron (QFI)
buffer. Our results are insensitive to variable total pressure, variable
volatile element abundances, and kinetic inhibition of C and N dissolution in
Fe metal. Our results predict that Earth's early atmosphere contained CH4, H2,
H2O, N2, and NH3; similar to that used in Miller-Urey synthesis of organic
compounds.Comment: 72 pages, 17 figures, 3 tables; submitted to Icaru
Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)
In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island(Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matterbearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, chlorofluorocarbon (CFC) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data
Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center
Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre
Die häufigsten vulkanischen Volatilen sind H2O, CO2, SO3 und Halogene. Zusammensetzung, Menge und Injektionsraten von vulkanischen Gasen und Partikeln in die Troposphäre und Stratosphäre hängen ab von der chemischen Zusammensetzung eines Magmas, dem plattentektonischen Milieu sowie Eruptionsmechanismen und Eruptionsraten. Über 90% der eruptierten Magmen sind basaltischer Zusammensetzung mit niedriger Viskosität, relativ geringen Volatilengehalten und meist niedrigen Eruptionsraten sowie wenig explosiven Eruptionen überwiegend entlang der mittelozeanischen Rücken in großen Wassertiefen. Magmen in Inselbögen und Subduktionszonen an Kontinenträndern sind H2O-reich, in anderen plattentektonischen Milieus überwiegt in basaltischen Magmen CO2. In mafischen Magmen ist CO2 schlecht löslich und kann daher schon mehrere Kilometer unter der Erdoberfläche als Gasphase aus einem Magma entweichen. Felsische (hochdifferenzierte) Magmen, H2O-reich und CO2-arm, eruptieren oft hochexplosiv, insbesondere an Subduktionszonen, und mit hohen Eruptionsraten, z.B. El Chichón (Mexiko, 1982) und Pinatubo (Philippinen, 1991). Ihre Eruptionssäulen (Gas-/Partikelgemische) können bis ca. 40 km Höhe erreichen und sind Hauptlieferant der in die Stratosphäre injizierten Gasmengen
A MASS SPECTROMETRIC STUDY OF THE ANGULAR DISTRIBUTION OF MOLECULAR EFFUSION
Abstract not availabl
Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids
- …
