392 research outputs found
High-momentum proton removal from 16O and the (e,e'p) cross section
The cross section for the removal of high-momentum protons from 16O is
calculated for high missing energies. The admixture of high-momentum nucleons
in the 16O ground state is obtained by calculating the single-hole spectral
function directly in the finite nucleus with the inclusion of short-range and
tensor correlations induced by a realistic meson-exchange interaction. The
presence of high-momentum nucleons in the transition to final states in 15N at
60-100 MeV missing energy is converted to the coincidence cross section for the
(e,e'p) reaction by including the coupling to the electromagnetic probe and the
final state interactions of the outgoing proton in the same way as in the
standard analysis of the experimental data. Detectable cross sections for the
removal of a single proton at these high missing energies are obtained which
are considerably larger at higher missing momentum than the corresponding cross
sections for the p-wave quasihole transitions. Cross sections for these
quasihole transitions are compared with the most recent experimental data
available.Comment: 26 RevTex pages, 7 ps figure
Effective DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei
A new decomposition of the Dirac structure of nucleon self-energies in the
Dirac Brueckner-Hartree-Fock (DBHF) approach is adopted to investigate the
equation of state for asymmetric nuclear matter. The effective coupling
constants of , , and mesons with a density
dependence in the relativistic mean field approach are deduced by reproducing
the nucleon self-energy resulting from the DBHF at each density for symmetric
and asymmetric nuclear matter. With these couplings the properties of finite
nuclei are investigated. The agreement of charge radii and binding energies of
finite nuclei with the experimental data are improved simultaneously in
comparison with the projection method. It seems that the properties of finite
nuclei are sensitive to the scheme used for the DBHF self-energy extraction. We
may conclude that the properties of the asymmetric nuclear matter and finite
nuclei could be well described by the new decomposition approach of the G
matrix.Comment: 16 pages, 5 figure
Application of the density dependent hadron field theory to neutron star matter
The density dependent hadron field (DDRH) theory, previously applied to
isospin nuclei and hypernuclei is used to describe -stable matter and
neutron stars under consideration of the complete baryon octet. The
meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear
matter and extended to hyperons. We examine properties of density dependent
interactions derived from the Bonn A and from the Groningen NN potential as
well as phenomenological interactions. The consistent treatment of the density
dependence introduces rearrangement terms in the expression for the baryon
chemical potential. This leads to a more complex condition for the
-equilibrium compared to standard relativistic mean field (RMF)
approaches. We find a strong dependence of the equation of state and the
particle distribution on the choice of the vertex density dependence. Results
for neutron star masses and radii are presented. We find a good agreement with
other models for the maximum mass. Radii are smaller compared to RMF models and
indicate a closer agreement with results of non-relativistic Brueckner
calculations.Comment: 28 pages, 11 figure
Signatures of Nucleon Disappearance in Large Underground Detectors
For neutrons bound inside nuclei, baryon instability can manifest itself as a
decay into undetectable particles (e.g., ), i.e.,
as a disappearance of a neutron from its nuclear state. If electric charge is
conserved, a similar disappearance is impossible for a proton. The existing
experimental lifetime limit for neutron disappearance is 4-7 orders of
magnitude lower than the lifetime limits with detectable nucleon decay products
in the final state [PDG2000]. In this paper we calculated the spectrum of
nuclear de-excitations that would result from the disappearance of a neutron or
two neutrons from C. We found that some de-excitation modes have
signatures that are advantageous for detection in the modern high-mass,
low-background, and low-threshold underground detectors, where neutron
disappearance would result in a characteristic sequence of time- and
space-correlated events. Thus, in the KamLAND detector [Kamland], a
time-correlated triple coincidence of a prompt signal, a captured neutron, and
a decay of the residual nucleus, all originating from the same
point in the detector, will be a unique signal of neutron disappearance
allowing searches for baryon instability with sensitivity 3-4 orders of
magnitude beyond the present experimental limits.Comment: 13 pages including 6 figures, revised version, to be published in
Phys.Rev.
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and
quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They
are sensitive to strange quark contributions to currents in the nucleon, and to
the nucleon axial current. The results indicate strange quark contributions of
< 10% of the charge and magnetic nucleon form factors at these four-momentum
transfers. We also present the first measurement of anapole moment effects in
the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic
scattering of transversely polarized electrons from the proton, and performed
the first measurement in quasi-elastic scattering on the deuteron, at backward
angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63
GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry
arises due to the imaginary part of the interference of the two-photon exchange
amplitude with that of single photon exchange. Results for the proton are
consistent with a model calculation which includes inelastic intermediate
hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for
the scattering from the neutron is made using a quasi-static deuterium
approximation, and is also in agreement with theory
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
GWAS study using DNA pooling strategy identifies association of variant rs4910623 in OR52B4 gene with anti-VEGF treatment response in age-related macular degeneration
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Pooled DNA based GWAS to determine genetic association of SNPs with visual acuity (VA) outcome in anti-vascular endothelial growth factor (anti-VEGF) treated neovascular age-related macular degeneration (nAMD) patients. We performed pooled DNA based GWAS on 285 anti-VEGF treated nAMD patients using high density Illumina 4.3 M array. Primary outcome was change in VA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters after 6 months of anti-VEGF treatment (patients who lost ≥5 ETDRS letters classified as non-responders and all remaining classified as responders). GWAS analysis identified 44 SNPs of interest: 37 with strong evidence of association (p < 9 × 10−8), 2 in drug resistance genes (p < 5 × 10−6) and 5 nonsynonymous changes (p < 1 × 10−4). In the validation phase, individual genotyping of 44 variants showed three SNPs (rs4910623 p = 5.6 × 10−5, rs323085 p = 6.5 × 10−4 and rs10198937 p = 1.30 × 10−3) remained associated with VA response at 6 months. SNP rs4910623 also associated with treatment response at 3 months (p = 1.5 × 10−3). Replication of these three SNPs in 376 patients revealed association of rs4910623 with poor VA response after 3 and 6 months of treatment (p = 2.4 × 10−3 and p = 3.5 × 10−2, respectively). Meta-analysis of both cohorts (673 samples) confirmed association of rs4910623 with poor VA response after 3 months (p = 1.2 × 10−5) and 6 months (p = 9.3 × 10−6) of treatment in nAMD patients
- …
