272 research outputs found

    Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing

    Get PDF
    Exosomes show promise as non-invasive biomarkers for cancers, but their effective capture and specific detection is a significant challenge. Herein, we report a multiplexed microfluidic device for highly specific capture and detection of multiple exosome targets using a tuneable alternating current electrohydrodynamic (ac-EHD) methodology - referred to as nanoshearing. In our system, electrical body forces generated by ac-EHD act within nanometers of an electrode surface (i.e., within the electrical layer) to generate nanoscaled fluid flow which enhances the specificity of capture and also reduce nonspecific adsorption of weakly bound molecules from the electrode surface. This approach demonstrates the analysis of exosomes derived from cells expressing human epidermal growth factor receptor 2 (HER2) and prostate specific antigen (PSA), and exhibits a 5-fold detection enhancement compared to hydrodynamic flow based assays. The device was also sensitive enough to detect approximately 2750 exosomes/µL (n = 3) and also capable of specifically isolating exosomes from breast cancer patient samples. We believe this approach can potentially find its relevance as a simple and rapid quantification tool to analyze exosome targets in biological applications

    Detection of regional DNA methylation using DNA-graphene affinity interactions

    Get PDF
    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl(-1) of DNA with no sequencing requirement

    Electrochemical detection of glycan and protein epitopes of glycoproteins in serum

    Get PDF
    Aberrant protein glycosylation is associated with a range of pathological conditions including cancer and possesses diagnostic importance. Translation of glycoprotein biomarkers will be facilitated by the development of a rapid and sensitive analytical platform that simultaneously interrogates both the glycan and protein epitopes of glycoproteins in body fluids such as serum or saliva. To this end, we developed an electrochemical biosensor based on the immobilization of a lectin on the gold electrode surface to recognize/capture a target glycan epitope conjugated to glycoproteins, followed by detection of the protein epitope using a target protein-specific antibody. Electrochemical signals are generated by label-free voltammetric or impedimetric interrogation of a ferro/ferricyanide redox couple (e.g. [Fe(CN)(6)](3-/4-)) on the sensing surface, where the change in voltammetric current or interfacial electron transfer resistance was measured. The detection system was demonstrated using the model glycoprotein chicken ovalbumin with Sambucus nigra agglutinin type I (SNA lectin), and exhibits femtomolar sensitivity in the background of diluted human serum. The results obtained in this proof-of-concept study demonstrate the possibility of using electrochemical detection for developing cheap point-of-care diagnostics with high specificity and sensitivity for blood glycoprotein biomarkers

    Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective

    Get PDF
    Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production

    eMethylsorb: rapid quantification of DNA methylation in cancer cells on screen-printed gold electrodes

    Get PDF
    Simple, sensitive and inexpensive regional DNA methylation detection methodologies are imperative for routine patient diagnostics. Herein, we describe eMethylsorb, an electrochemical assay for quantitative detection of regional DNA methylation on a single-use and cost-effective screen-printed gold electrode (SPE-Au) platform. The eMethylsorb approach is based on the inherent differential adsorption affinity of DNA bases to gold (i.e. adenine > cytosine ≥ guanine > thymine). Through bisulfite modification and asymmetric PCR of DNA, methylated and unmethylated DNA in the sample becomes guanine-enriched and adenine-enriched respectively. Under optimized conditions, adenine-enriched unmethylated DNA (higher affinity to gold) adsorbs more onto the SPE-Au surface than methylated DNA. Higher DNA adsorption causes stronger coulombic repulsion and hinders reduction of ferricyanide [Fe(CN)]ions on the SPE-Au surface to give a lower electrochemical response. Hence, the response level is directly proportional to the methylation level in the sample. The applicability of this methodology was tested by detecting the regional methylation status in a cluster of eight CpG sites within the engrailed (EN1) gene promoter of the MCF7 breast cancer cell line. A 10% methylation level sensitivity with good reproducibility (RSD = 5.8%, n = 3) was achieved rapidly in 10 min. Furthermore, eMethylsorb also has advantages over current methylation assays such as being inexpensive, rapid and does not require any electrode surface modification. We thus believe that the eMethylsorb assay could potentially be a rapid and accurate diagnostic assay for point-of-care DNA methylation analysis

    Diabetic kidney disease in rural Australia: prevention, management, treatment and way forward

    Get PDF
    Diabetic kidney disease is a significant microvascular complication associated with chronic diabetes, contributing substantially to the overall health burden of the disease. This perspective focusses on evaluating the most recent advancements in screening techniques, prevention, and treatment strategies along with new advances in the field. A comprehensive literature search was conducted across PubMed, Scopus and Google Scholar databases to identify and synthesize recent evidence. In Australia, chronic kidney disease (CKD) was responsible for approximately two million hospital admissions, accounting for 18% of all hospitalizations in 2021–22. In remote areas, 17,100 CKD-related hospitalizations were reported during this period, with residents being three times more likely to be hospitalized for CKD compared to those living in major cities. Among First Nations people, the burden was 7.8 times higher than that of non-Indigenous populations. Advocacy for policy changes to address healthcare disparities in rural and remote Australia is crucial

    Trace analysis of DNA: Preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles

    No full text
    We have developed a simple and sensitive on-chip preconcentration, separation, and electrochemical detection (ED) method for trace analysis of DNA. The microchip comprised of three parallel channels: the first two are for the field-amplified sample stacking and subsequent field-amplified sampled injection steps, while the third one is for the microchip gel electrophoresis (MGE) with ED (MGE-ED). To improve preconcentration and separation performances of the method, the stacking and separation buffers containing the hydroxypropyl cellulose (HPC) matrix were modified with gold nanoparticles (AuNPs). The formation of AuNPs and HPC/AuNP-modified buffers were characterized by UV−visible spectroscopy and TEM experiments. The conducting polymer-modified electrode was also modified with AuNPs to enhance detection performances of the electrode. The conducting polymer/AuNP layers act as electrocatalysts for the direct detection of DNA based on their oxidation in a solution phase. The total sensitivity was improved by 25000-fold when compared with a conventional MGE-ED analysis. The calibration plots were linear (r2 = 0.9993) within the range of 0.003−1.0 pg/μL for a 20-bp DNA sample. The sensitivity was 0.20 nA/(fg/μL), with a detection limit of 5.7 amol in a 50-μL sample, based on S/N = 3. The applicability of the method for the analysis of 13 fragments present in a 100-bp DNA ladder was successfully demonstrated

    Circulating tumor microemboli: Progress in molecular understanding and enrichment technologies

    Get PDF
    Circulating tumor cells (CTCs) and their clusters, also known as circulating tumor microemboli (CTM), have emerged as valuable tool that can provide mechanistic insights into the tumor heterogeneity, clonal evolution, and stochastic events within the metastatic cascade. However, recent investigations have hinted that CTM may not be mere aggregates of tumor cells but cells comprising CTM exhibit distinct phenotypic and molecular characteristics in comparison to single CTCs. Moreover, in many cases CTM demonstrated higher metastatic potential and resistance to apoptosis as compared to their single cell counterparts. Thus, their evaluation and enumeration may provide a new dimension to our understanding of cancer biology and metastatic cancer spread as well as offer novel theranostic biomarkers. Most of the existing technologies for isolation of hematogenous tumor cells largely favor single CTCs, hence there is a need to devise new approaches, or re-configure the existing ones, for specific and efficient CTM isolation. Here we review existing knowledge and insights on CTM biology. Furthermore, a critical commentary on current and emerging trends in CTM enrichment and characterization along with recently developed ex-vivo CTC expansion methodologies is presented with the aim to facilitate researchers to identify further avenues of research and development.Griffith Sciences, Queensland Micro and Nanotechnology CentreFull Tex
    corecore