1,982 research outputs found
Magnetic field tuning of coplanar waveguide resonators
We describe measurements on microwave coplanar resonators designed for
quantum bit experiments. Resonators have been patterned onto sapphire and
silicon substrates, and quality factors in excess of a million have been
observed. The resonant frequency shows a high sensitivity to magnetic field
applied perpendicular to the plane of the film, with a quadratic dependence for
the fundamental, second and third harmonics. Frequency shift of hundreds of
linewidths can be obtained.Comment: Accepted for publication in AP
On the properties of superconducting planar resonators at mK temperatures
Planar superconducting resonators are now being increasingly used at mK
temperatures in a number of novel applications. They are also interesting
devices in their own right since they allow us to probe the properties of both
the superconductor and its environment. We have experimentally investigated
three types of niobium resonators - including a lumped element design -
fabricated on sapphire and SiO_2/Si substrates. They all exhibit a non-trivial
temperature dependence of their centre frequency and quality factor. Our
results shed new light on the interaction between the electromagnetic waves in
the resonator and two-level fluctuators in the substrate.Comment: V2 includes some minor corrections/changes. Submitted to PR
On the Eigenvalue Density of Real and Complex Wishart Correlation Matrices
Wishart correlation matrices are the standard model for the statistical
analysis of time series. The ensemble averaged eigenvalue density is of
considerable practical and theoretical interest. For complex time series and
correlation matrices, the eigenvalue density is known exactly. In the real
case, however, a fundamental mathematical obstacle made it forbidingly
complicated to obtain exact results. We use the supersymmetry method to fully
circumvent this problem. We present an exact formula for the eigenvalue density
in the real case in terms of twofold integrals and finite sums.Comment: 4 pages, 2 figure
Circuit QED with a Flux Qubit Strongly Coupled to a Coplanar Transmission Line Resonator
We propose a scheme for circuit quantum electrodynamics with a
superconducting flux-qubit coupled to a high-Q coplanar resonator. Assuming
realistic circuit parameters we predict that it is possible to reach the strong
coupling regime. Routes to metrological applications, such as single photon
generation and quantum non-demolition measurements are discussed.Comment: 8 pages, 5 figure
Quantum Dynamics of a Bose Superfluid Vortex
We derive a fully quantum-mechanical equation of motion for a vortex in a
2-dimensional Bose superfluid, in the temperature regime where the normal fluid
density is small. The coupling between the vortex "zero mode" and
the quasiparticles has no term linear in the quasiparticle variables -- the
lowest-order coupling is quadratic. We find that as a function of the
dimensionless frequency , the standard
Hall-Vinen/Iordanskii equations are valid when (the
"classical regime"), but elsewhere, the equations of motion become highly
retarded, with significant experimental implications when .Comment: 12 pages (4 pages + supp info), 2 figures, accepted to PR
Anatomy of the long head of biceps femoris: An ultrasound study
Hamstring strains, particularly involving the long head of biceps femoris (BFlh) at the proximal musculotendinous junction (MTJ), are commonly experienced by athletes. With the use of diagnostic ultrasound increasing, an in-depth knowledge of normal ultrasonographic anatomy is fundamental to better understanding hamstring strain. The aim of this study was to describe the architecture of BFlh, using ultrasonography, in young men and cadaver specimens. BFlh morphology was examined in 19 healthy male participants (mean age 21.6 years) using ultrasound. Muscle, tendon and MTJ lengths were recorded and architectural parameters assessed at four standardised points along the muscle. Measurement accuracy was validated by ultrasound and dissection of BFlh in six male cadaver lower limbs (mean age 76 years). Intra-rater reliability of architectural parameters was examined for repeat scans, image analysis and dissection measurements. Distally the BFlh muscle had significantly (P
TEDI: the TripleSpec Exoplanet Discovery Instrument
The TEDI (TripleSpec - Exoplanet Discovery Instrument) will be the first
instrument fielded specifically for finding low-mass stellar companions. The
instrument is a near infra-red interferometric spectrometer used as a radial
velocimeter. TEDI joins Externally Dispersed Interferometery (EDI) with an
efficient, medium-resolution, near IR (0.9 - 2.4 micron) echelle spectrometer,
TripleSpec, at the Palomar 200" telescope. We describe the instrument and its
radial velocimetry demonstration program to observe cool stars.Comment: 6 Pages, To Appear in SPIE Volume 6693, Techniques and
Instrumentation for Detection of Exoplanets II
Kepler Planet Occurrence Rates for Mid-type M Dwarfs as a Function of Spectral Type
Previous studies of planet occurrence rates largely relied on photometric stellar characterizations. In this paper, we present planet occurrence rates for mid-type M dwarfs using spectroscopy, parallaxes, and photometry to determine stellar characteristics. Our spectroscopic observations have allowed us to constrain spectral type, temperatures, and, in some cases, metallicities for 337 out of 561 probable mid-type M dwarfs in the primary Kepler field. We use a random forest classifier to assign a spectral type to the remaining 224 stars. Combining our data with Gaia parallaxes, we compute precise (~3%) stellar radii and masses, which we use to update planet parameters and occurrence rates for Keplermid-type M dwarfs. Within the Kepler field, there are seven M3 V to M5 V stars that host 13 confirmed planets between 0.5 and 2.5 Earth radii and at orbital periods between 0.5 and 10 days. For this population, we compute a planet occurrence rate of 1.19^(+0.70)_(−0.49) planets per star. For M3 V, M4 V, and M5 V, we compute planet occurrence rates of 0.86^(+1.32)_(−0.68), 1.36^(+2.30)_(−1.02), and 3.07^(+5.49)_(−2.4) planets per star, respectively
Gap Probabilities for Edge Intervals in Finite Gaussian and Jacobi Unitary Matrix Ensembles
The probabilities for gaps in the eigenvalue spectrum of the finite dimension
random matrix Hermite and Jacobi unitary ensembles on some
single and disconnected double intervals are found. These are cases where a
reflection symmetry exists and the probability factors into two other related
probabilities, defined on single intervals. Our investigation uses the system
of partial differential equations arising from the Fredholm determinant
expression for the gap probability and the differential-recurrence equations
satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find
second and third order nonlinear ordinary differential equations defining the
probabilities in the general case. For N=1 and N=2 the probabilities and
thus the solution of the equations are given explicitly. An asymptotic
expansion for large gap size is obtained from the equation in the Hermite case,
and also studied is the scaling at the edge of the Hermite spectrum as , and the Jacobi to Hermite limit; these last two studies make
correspondence to other cases reported here or known previously. Moreover, the
differential equation arising in the Hermite ensemble is solved in terms of an
explicit rational function of a {Painlev\'e-V} transcendent and its derivative,
and an analogous solution is provided in the two Jacobi cases but this time
involving a {Painlev\'e-VI} transcendent.Comment: 32 pages, Latex2
- …
