300 research outputs found
Les vertébrés fossiles de la formation Pisco (Pérou) : biostratigraphie, corrélations et paléoenvironnement
<i>Koristocetus pescei</i> gen. et sp. nov., a diminutive sperm whale (Cetacea: Odontoceti: Kogiidae) from the late Miocene of Peru
Among odontocetes, members of the family Kogiidae (pygmy and dwarf sperm whales) are known as small-sized and in many respects enigmatic relatives of the great sperm whale Physeter macrocephalus. Most of the still scanty fossil record of Kogiidae is represented by isolated skulls and ear bones from Neogene deposits of the Northern Hemisphere, with the significant exception of Scaphokogia, a highly autapomorphic genus from late Miocene deposits of the Pisco Formation exposed along the southern coast of Peru. Here we report on a new fossil kogiid from Aguada de Lomas, a site where the late Miocene beds of the Pisco Formation are exposed. This specimen consists of an almost complete cranium representing a new taxon of Kogiidae: Koristocetus pescei gen. et sp. nov. Koristocetus mainly differs from extant Kogia spp. by displaying a larger temporal fossa and well-individualized dental alveoli on the upper jaws. Coupled with a relatively elongated rostrum, these characters suggest that Koristocetus retained some degree of raptorial feeding abilities, contrasting with the strong suction feeding specialization seen in Recent kogiids. Our phylogenetic analysis recognizes Koristocetus as the earliest branching member of the subfamily Kogiinae. Interestingly, Koristocetus shared the southern coast of present-day Peru with members of the genus Scaphokogia, whose unique convex rostrum and unusual neurocranial morphology seemingly indicate a peculiar foraging specialization that has still to be understood. In conclusion, Koristocetus evokes a long history of high diversity, morphological disparity, and sympatric habits in fossil kogiids, thus suggesting that our comprehension of the evolutionary history of pygmy and dwarf sperm whales is still far from being exhaustive
The archaic beaked whale <i>Ninoziphius platyrostris</i>: clues on the evolutionary history of the family Ziphiidae (Cetacea, Odontoceti)
Incidence and survival of remnant disks around main-sequence stars
We present photometric ISO 60 and 170um measurements, complemented by some
IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral
class A, F, G and K in order to determine the incidence of dust disks around
such main-sequence stars. Of the stars younger than 400 Myr one in two has a
disk; for the older stars this is true for only one in ten. We conclude that
most stars arrive on the main sequence surrounded by a disk; this disk then
decays in about 400 Myr. Because (i) the dust particles disappear and must be
replenished on a much shorter time scale and (ii) the collision of
planetesimals is a good source of new dust, we suggest that the rapid decay of
the disks is caused by the destruction and escape of planetesimals. We suggest
that the dissipation of the disk is related to the heavy bombardment phase in
our Solar System. Whether all stars arrive on the main sequence surrounded by a
disk cannot be established: some very young stars do not have a disk. And not
all stars destroy their disk in a similar way: some stars as old as the Sun
still have significant disks.Comment: 16 pages, 9 figures, Astron & Astrophys. in pres
The unusual hydrocarbon emission from the early carbon star HD 100764: The connection between aromatics and aliphatics
We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope
to obtain spectra of HD 100764, an apparently single carbon star with a
circumstellar disk. The spectrum shows emission features from polycyclic
aromatic hydrocarbons (PAHs) that are shifted to longer wavelengths than
normally seen, as characteristic of ``class C'' systems in the classification
scheme of Peeters et al. All seven of the known class C PAH sources are
illuminated by radiation fields that are cooler than those which typically
excite PAH emission features. The observed wavelength shifts are consistent
with hydrocarbon mixtures containing both aromatic and aliphatic bonds. We
propose that the class C PAH spectra are distinctive because the carbonaceous
material has not been subjected to a strong ultraviolet radiation field,
allowing relatively fragile aliphatic materials to survive.Comment: 11 pages (in emulateapj), 5 tables, 7 figures. Accepted for
publication in Ap
Debris disks around Sun-like stars
We have observed nearly 200 FGK stars at 24 and 70 microns with the Spitzer
Space Telescope. We identify excess infrared emission, including a number of
cases where the observed flux is more than 10 times brighter than the predicted
photospheric flux, and interpret these signatures as evidence of debris disks
in those systems. We combine this sample of FGK stars with similar published
results to produce a sample of more than 350 main sequence AFGKM stars. The
incidence of debris disks is 4.2% (+2.0/-1.1) at 24 microns for a sample of 213
Sun-like (FG) stars and 16.4% (+2.8/-2.9) at 70 microns for 225 Sun-like (FG)
stars. We find that the excess rates for A, F, G, and K stars are statistically
indistinguishable, but with a suggestion of decreasing excess rate toward the
later spectral types; this may be an age effect. The lack of strong trend among
FGK stars of comparable ages is surprising, given the factor of 50 change in
stellar luminosity across this spectral range. We also find that the incidence
of debris disks declines very slowly beyond ages of 1 billion years.Comment: ApJ, in pres
Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)
This paper is the first integrated account of the sedimentology, stratigraphy and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4,000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene.
The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages
Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)
This paper is the first integrated account of the sedimentology, stratigraphy and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4,000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene.
The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages
Sub-mm observations and modelling of Vega type stars
We present new sub-mm observations and modelling of Vega excess stars, using
realistic dust grain models. For resolved disks, we find that different objects
require very different dust grain properties in order to simultaneously fit the
image data and SED. Fomalhaut and Vega require solid dust grains, whilst HR4796
and HD141569 can only be fitted using porous grains. The older stars tend to
have less porous grains than younger stars, which may indicate that collisions
have compacted the dust grains. Eps Eri appears to be deficient in small dust
grains compared to our best fitting model. This may be due to factors which
affect the size distribution of grains close to the radiation pressure blowout
limit. Alternatively, this discrepancy may be due to some external influence on
the disk (e.g. a planet). When the model is applied to unresolved targets, an
estimate of the disk size can be made. However, the large diversity in dust
composition for the resolved disks means that we cannot make a reliable
assumption as to the composition of the grains in an unresolved disk, and there
is corresponding uncertainty in the disk size. In addition, the poor fit for
Eps Eri shows that the model cannot always account for the SED even if the disk
size is known. These two factors mean that it may not be possible to determine
a disk's size without actually resolving it.Comment: 15 pages, 15 figures, accepted by MNRAS. Revised Eps Eri modelling to
show larger range of minimum size cutoffs with porous grains, Figure
HST and Spitzer Observations of the HD 207129 Debris Ring
A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in
scattered visible light with the ACS coronagraph on the Hubble Space Telescope
and in thermal emission using MIPS on the Spitzer Space Telescope at 70 microns
(resolved) and 160 microns (unresolved). Spitzer IRS (7-35 microns) and MIPS
(55-90 microns) spectrographs measured disk emission at >28 microns. In the HST
image the disk appears as a ~30 AU wide ring with a mean radius of ~163 AU and
is inclined by 60 degrees from pole-on. At 70 microns it appears partially
resolved and is elongated in the same direction and with nearly the same size
as seen with HST in scattered light. At 0.6 microns the ring shows no
significant brightness asymmetry, implying little or no forward scattering by
its constituent dust. With a mean surface brightness of V=23.7 mag per square
arcsec, it is the faintest disk imaged to date in scattered light.Comment: 28 pages, 8 figure
- …
