933 research outputs found
Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum during recollection: Evidence from simultaneous EEG-fMRI
Recollection of contextual information represents the core of human recognition memory. It has been associated with theta (4-8 Hz) power in electrophysiological recordings and, independently, with BOLD effects in a network including the hippocampus and frontal cortex. Although the notion of the hippocampus coordinating neocortical activity by synchronization in the theta range is common among theoretical models of recollection, direct evidence supporting this hypothesis is scarce. To address this apparent gap in our understanding of memory processes, we combined EEG and fMRI during a remember/know recognition task. We can show that recollection-specific theta-alpha (4-13Hz) effects are correlated with increases in hippocampal connectivity with the prefrontal cortex and, importantly, the striatum, areas that have repeatedly been linked to retrieval success. Taken together, our results provide compelling evidence that low frequency oscillations in the theta and alpha range provide a mechanism to functionally bind the hippocampus, prefrontal cortex and striatum during successful recollection
Bins of Plums
This collection of poems represents work revised and completed during my tenure in the M.A. program in English. The pieces deal with themes of identity, family, and love, and the nature of poetry itself. An introduction is included that identifies my major influences and my purpose in writing poetry
Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements
Understanding the neural mechanisms responsible for human social interactions
is difficult, since the brain activities of two or more individuals have to be
examined simultaneously and correlated with the observed social patterns. We
introduce the concept of hyper-brain network, a connectivity pattern
representing at once the information flow among the cortical regions of a
single brain as well as the relations among the areas of two distinct brains.
Graph analysis of hyper-brain networks constructed from the EEG scanning of 26
couples of individuals playing the Iterated Prisoner's Dilemma reveals the
possibility to predict non-cooperative interactions during the decision-making
phase. The hyper-brain networks of two-defector couples have significantly less
inter-brain links and overall higher modularity - i.e. the tendency to form two
separate subgraphs - than couples playing cooperative or tit-for-tat
strategies. The decision to defect can be "read" in advance by evaluating the
changes of connectivity pattern in the hyper-brain network
Detection of experimental ERP effects in combined EEG-fMRI: evaluating the benefits of interleaved acquisition and Independent Component Analysis
Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Clinical Neurophysiology . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Clinical Neurophysiology, 2011 Vol. 122 Issue 2, pp. 267-77 DOI: http://dx.doi.org/10.1016/j.clinph.2010.06.033Objective
The present study examined the benefit of rapid alternation of EEG and fMRI (a common strategy for avoiding artifact caused by rapid switching of MRI gradients) for detecting experimental modulations of ERPs in combined EEG–fMRI. The study also assessed the advantages of aiding the extraction of specific ERP components by means of signal decomposition using Independent Component Analysis (ICA).
Methods
‘Go–nogo’ task stimuli were presented either during fMRI scanning or in the gaps between fMRI scans, resulting in ‘gradient’ and ‘no-gradient’ ERPs. ‘Go–nogo’ differences in the N2 and P3 components were subjected to conventional ERP analysis, as well as single-trial and reliability analyses.
Results
Comparable N2 and P3 enhancement on ‘nogo’ trials was found in the ‘gradient’ and ‘no-gradient’ ERPs. ICA-based signal decomposition resulted in better validity (as indicated by topography), greater stability and lower measurement error of the predicted ERP effects.
Conclusions
While there was little or no benefit of acquiring ERPs in the gaps between fMRI scans, ICA decomposition did improve the detection of experimental ERP modulations.
Significance
Simultaneous and continuous EEG–fMRI acquisition is preferable to interleaved protocols. ICA-based decomposition is useful not only for artifact cancellation, but also for the extraction of specific ERP components
Dopamine D3 Receptors Inhibit Hippocampal Gamma Oscillations by Disturbing CA3 Pyramidal Cell Firing Synchrony
Cortical gamma oscillations are associated with cognitive processes and are
altered in several neuropsychiatric conditions such as schizophrenia and
Alzheimer’s disease. Since dopamine D3 receptors are possible targets in
treatment of these conditions, it is of great importance to understand their
role in modulation of gamma oscillations. The effect of D3 receptors on gamma
oscillations and the underlying cellular mechanisms were investigated by
extracellular local field potential and simultaneous intracellular sharp
micro-electrode recordings in the CA3 region of the hippocampus in vitro. D3
receptors decreased the power and broadened the bandwidth of gamma
oscillations induced by acetylcholine or kainate. Blockade of the D3 receptors
resulted in faster synchronization of the oscillations, suggesting that
endogenous dopamine in the hippocampus slows down the dynamics of gamma
oscillations by activation of D3 receptors. Investigating the underlying
cellular mechanisms for these effects showed that D3 receptor activation
decreased the rate of action potentials (APs) during gamma oscillations and
reduced the precision of the AP phase coupling to the gamma cycle in CA3
pyramidal cells. The results may offer an explanation how selective activation
of D3 receptors may impair cognition and how, in converse, D3 antagonists may
exert pro-cognitive and antipsychotic effects
The role of visual experience in the emergence of cross-modal correspondences
Cross-modal correspondences describe the widespread tendency for attributes in one sensory modality to be consistently matched to those in another modality. For example, high pitched sounds tend to be matched to spiky shapes, small sizes, and high elevations. However, the extent to which these correspondences depend on sensory experience (e.g. regularities in the perceived environment) remains controversial. Two recent studies involving blind participants have argued that visual experience is necessary for the emergence of correspondences, wherein such correspondences were present (although attenuated) in late blind individuals but absent in the early blind. Here, using a similar approach and a large sample of early and late blind participants (N=59) and sighted controls (N=63), we challenge this view. Examining five auditory-tactile correspondences, we show that only one requires visual experience to emerge (pitch-shape), two are independent of visual experience (pitch-size, pitch-weight), and two appear to emerge in response to blindness (pitch-texture, pitch-softness). These effects tended to be more pronounced in the early blind than late blind group, and the duration of vision loss among the late blind did not mediate the strength of these correspondences. Our results suggest that altered sensory input can affect cross-modal correspondences in a more complex manner than previously thought and cannot solely be explained by a reduction in visually-mediated environmental correlations. We propose roles of visual calibration, neuroplasticity and structurally-innate associations in accounting for our findings
Whodunnit? Electrophysiological correlates of agency judgements.
Sense of agency refers to the feeling that "I" am responsible for those external events that are directly produced by one's own voluntary actions. Recent theories distinguish between a non-conceptual "feeling" of agency linked to changes in the processing of self-generated sensory events, and a higher-order judgement of agency, which attributes sensory events to the self. In the current study we explore the neural correlates of the judgement of agency by means of electrophysiology. We measured event-related potentials to tones that were either perceived or not perceived as triggered by participants' voluntary actions and related these potentials to later judgements of agency over the tones. Replicating earlier findings on predictive sensory attenuation, we found that the N1 component was attenuated for congruent tones that corresponded to the learned action-effect mapping as opposed to incongruent tones that did not correspond to the previously acquired associations between actions and tones. The P3a component, but not the N1, directly reflected the judgement of agency: deflections in this component were greater for tones judged as self-generated than for tones judged as externally produced. The fact that the outcome of the later agency judgement was predictable based on the P3a component demonstrates that agency judgements incorporate early information processing components and are not purely reconstructive, post-hoc evaluations generated at time of judgement
- …
