4,261 research outputs found

    A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    Get PDF
    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used

    Existence of Long-Range Order for Trapped Interacting Bosons

    Full text link
    We derive an inequality governing ``long range'' order for a localized Bose-condensed state, relating the condensate fraction at a given temperature with effective curvature radius of the condensate and total particle number. For the specific example of a one-dimensional, harmonically trapped dilute Bose condensate, it is shown that the inequality gives an explicit upper bound for the Thomas-Fermi condensate size which may be tested in current experiments.Comment: 4 pages, 1 figure, RevTex4. Title changed at the request of editors; to appear in Phys. Rev. Letter

    Giant viscosity enhancement in a spin-polarized Fermi liquid

    Get PDF
    The viscosity is measured for a Fermi liquid, a dilute 3^3He-4^4He mixture, under extremely high magnetic field/temperature conditions (B14.8B \leq 14.8 T, T1.5T \geq 1.5 mK). The spin splitting energy μB\mu B is substantially greater than the Fermi energy kBTFk_B T_F; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for TTFT \ll T_F. Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a tt-matrix formalism.Comment: 4 pages, 4 figure

    Home Ranges of Rat Snakes (Colubridae: Elaphe) in Different Habitats

    Get PDF
    Based on our findings, we suggest that rat snakes represent not only a major predator of kites, but also of other canopy and mid-story nesting species in the southeastern United States. For example, rat snakes are the most dominant snake nest predator of bird nests throughout the Southeast (DeGregorio et al. 2014) and are skilled tree climbers that often occupy arboreal habitats (Jackson 1976, Keller and Heske 2000, Sperry et al. 2009), particularly in bottomland forests (Mullin et al. 2000, Carfagno and Weatherhead 2009). Thus, the role of rat snakes as predators of nests above the understory is likely underappreciated because of the paucity of information on causes of failure among mid-story and canopy nest

    Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros

    Get PDF
    We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose-systems in power law traps within a semi-analytic approach with a continuous one-particle density of states Ω(E)Ed1\Omega(E)\sim E^{d-1} for different values of dd and to a three dimensional harmonically confined ideal Bose-gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein condensation phase transition sensitively depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small systems see "http://www.smallsystems.de

    Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy

    Get PDF
    The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles

    Snake (Colubridae: Thamnophis) Predatory Responses to Chemical Cues from Native and Introduced Prey Species

    Get PDF
    Several aquatic vertebrates have been introduced into freshwater systems in California over the past 100 years. Some populations of the two-striped garter snake (Thamnophis hammondii) have lived in sympatry with these species since their introduction; other populations have never encountered them. To assess the possible adaptation to a novel prey, we tested the predatory responses of T. hammondii from different populations to different chemosensory cues from native and introduced prey species. We presented chemical extracts from potential prey types and 2 control odors to individual snakes on cotton swabs and recorded the number of tongue flicks and attacks directed at each swab. Subject response was higher for prey odors than control substances. Odors from introduced centrarchid fish (Lepomis) elicited higher response levels than other prey types, including native anuran larvae (Pseudacris regilla). The pattern of response was similar for both populations of snakes (experienced and naïve, with respect to the introduced prey). We suggest that the generalist aquatic lifestyle of T. hammondii has allowed it to take advantage of increasing populations of introduced prey. Decisions on the management strategies for some of these introduced prey species should include consideration of how T. hammondii populations might respond in areas of sympatry

    Maximal length of trapped one-dimensional Bose-Einstein condensates

    Full text link
    I discuss a Bogoliubov inequality for obtaining a rigorous bound on the maximal axial extension of inhomogeneous one-dimensional Bose-Einstein condensates. An explicit upper limit for the aspect ratio of a strongly elongated, harmonically trapped Thomas-Fermi condensate is derived.Comment: 6 pages; contributed paper for Quantum Fluids and Solids, Trento 2004, to appear in JLT

    Reduction and Emergence in Bose-Einstein Condensates

    Get PDF
    A closer look at some proposed Gedanken-experiments on BECs promises to shed light on several aspects of reduction and emergence in physics. These include the relations between classical descriptions and different quantum treatments of macroscopic systems, and the emergence of new properties and even new objects as a result of spontaneous symmetry breaking
    corecore