232 research outputs found

    Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThe mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism

    ECG T-Wave Morphologic Variations Predict Ventricular Arrhythmic Risk in Low- and Moderate-Risk Populations

    Get PDF
    Background Early identification of individuals at risk of sudden cardiac death (SCD) remains a major challenge. The ECG is a simple, common test, with potential for large‐scale application. We developed and tested the predictive value of a novel index quantifying T‐wave morphologic variations with respect to a normal reference (TMV), which only requires one beat and a single‐lead ECG. Methods and Results We obtained reference T‐wave morphologies from 23 962 participants in the UK Biobank study. With Cox models, we determined the association between TMV and life‐threatening ventricular arrhythmia in an independent data set from UK Biobank study without a history of cardiovascular events (N=51 794; median follow‐up of 122 months) and SCD in patients with coronary artery disease from ARTEMIS (N=1872; median follow‐up of 60 months). In UK Biobank study, 220 (0.4%) individuals developed life‐threatening ventricular arrhythmias. TMV was significantly associated with life‐threatening ventricular arrhythmias (hazard ratio [HR] of 1.13 per SD increase [95% CI, 1.03–1.24]; P=0.009). In ARTEMIS, 34 (1.8%) individuals reached the primary end point. Patients with TMV ≥5 had an HR for SCD of 2.86 (95% CI, 1.40–5.84; P=0.004) with respect to those with TMV <5, independently from QRS duration, corrected QT interval, and left ventricular ejection fraction. TMV was not significantly associated with death from a cause other than SCD. Conclusions TMV identifies individuals at life‐threatening ventricular arrhythmia and SCD risk using a single‐beat single‐lead ECG, enabling inexpensive, quick, and safe risk assessment in large populations

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Promise and Peril of a Genotype-First Approach to Mendelian Cardiovascular Disease.

    Get PDF
    Precision medicine, which among other aspects includes an individual's genomic data in diagnosis and management, has become the standard-of-care for Mendelian cardiovascular disease (CVD). However, early identification and management of asymptomatic patients with potentially lethal and manageable Mendelian CVD through screening, which is the promise of precision health, remains an unsolved challenge. The reduced costs of genomic sequencing have enabled the creation of biobanks containing in-depth genetic and health information, which have facilitated the understanding of genetic variation, penetrance, and expressivity, moving us closer to the genotype-first screening of asymptomatic individuals for Mendelian CVD. This approach could transform health care by diagnostic refinement and facilitating prevention or therapeutic interventions. Yet, potential benefits must be weighed against the potential risks, which include evolving variant pathogenicity assertion or identification of variants with low disease penetrance; costly, stressful, and inappropriate diagnostic evaluations; negative psychological impact; disqualification for employment or of competitive sports; and denial of insurance. Furthermore, the natural history of Mendelian CVD is often unpredictable, making identification of those who will benefit from preventive measures a priority. Currently, there is insufficient evidence that population-based genetic screening for Mendelian CVD can reduce adverse outcomes at a reasonable cost to an extent that outweighs the harms of true-positive and false-positive results. Besides technical, clinical, and financial burdens, ethical and legal aspects pose unprecedented challenges. This review highlights key developments in the field of genotype-first approaches to Mendelian CVD and summarizes challenges with potential solutions that can pave the way for implementing this approach for clinical care

    Sense and Antisense Transcripts of Convergent Gene Pairs in Arabidopsis thaliana Can Share a Common Polyadenylation Region

    Get PDF
    The Arabidopsis genome contains a large number of gene pairs that encode sense and antisense transcripts with overlapping 3′ regions, indicative for a potential role of natural antisense transcription in regulating sense gene expression or transcript processing. When we mapped poly(A) transcripts of three plant gene pairs with long overlapping antisense transcripts, we identified an unusual transcript composition for two of the three gene pairs. Both genes pairs encoded a class of long sense transcripts and a class of short sense transcripts that terminate within the same polyadenylation region as the antisense transcripts encoded by the opposite strand. We find that the presence of the short sense transcript was not dependent on the expression of an antisense transcript. This argues against the assumption that the common termination region for sense and antisense poly(A) transcripts is the result of antisense-specific regulation. We speculate that for some genes evolution may have especially favoured alternative polyadenylation events that shorten transcript length for gene pairs with overlapping sense/antisense transcription, if this reduces the likelihood for dsRNA formation and transcript degradation

    Non-protein coding RNA biomarkers and differential expression in cancers: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In these years a huge number of human transcripts has been found that do not code for proteins, named non-protein coding RNAs. In most cases, small (miRNAs, snoRNAs) and long RNAs (antisense RNA, dsRNA, and long RNA species) have many roles, functioning as regulators of other mRNAs, at transcriptional and post-transcriptional level, and controlling protein ubiquitination and degradation. Various species of npcRNAs have been found differentially expressed in different types of cancer. This review discusses the published data and new results on the expression of a subset of npcRNAs.</p> <p>Conclusion</p> <p>These results underscore the complexity of the RNA world and provide further evidence on the involvement of functional RNAs in cancer cell growth control.</p

    Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk

    Get PDF
    Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk

    Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-<it>O</it>-methylhonokiol, a constituent of <it>Magnolia officinalis</it>, on memory deficiency caused by LPS, along with the underlying mechanisms.</p> <p>Methods</p> <p>We investigated whether 4-<it>O</it>-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 μg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-<it>O</it>-methylhonkiol (0.5, 1 and 2 μM).</p> <p>Results</p> <p>Oral administration of 4-<it>O</it>-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-<it>O</it>-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In <it>in vitro </it>study, we also found that 4-<it>O</it>-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E<sub>2</sub>, tumor necrosis factor-α, and interleukin-1β in the LPS-stimulated cultured astrocytes. 4-<it>O</it>-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-<it>O</it>-methylhonokiol inhibited LPS-induced Aβ<sub>1-42 </sub>generation, β- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells.</p> <p>Conclusion</p> <p>These results suggest that 4-<it>O</it>-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-<it>O</it>-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.</p

    Large-scale exome array summary statistics resources for glycemic traits to aid effector gene prioritization.

    Get PDF
    BACKGROUND: Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. METHODS: To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. RESULTS: Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. CONCLUSIONS: Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries
    corecore