2,592 research outputs found

    ORB-SLAM: a Versatile and Accurate Monocular SLAM System

    Full text link
    This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.Comment: 17 pages. 13 figures. IEEE Transactions on Robotics, 2015. Project webpage (videos, code): http://webdiis.unizar.es/~raulmur/orbslam

    Predicting spinor condensate dynamics from simple principles

    Get PDF
    We study the spin dynamics of quasi-one-dimensional F=1 condensates both at zero and finite temperatures for arbitrary initial spin configurations. The rich dynamical evolution exhibited by these non-linear systems is explained by surprisingly simple principles: minimization of energy at zero temperature, and maximization of entropy at high temperature. Our analytical results for the homogeneous case are corroborated by numerical simulations for confined condensates in a wide variety of initial conditions. These predictions compare qualitatively well with recent experimental observations and can, therefore, serve as a guidance for on-going experiments.Comment: 4 pages, 2 figures. v3: matches version appeared in PR

    Spin mixing in colliding spinor condensates: formation of an effective barrier

    Full text link
    The dynamics of F=1 spinor condensates initially prepared in a double-well potential is studied in the mean field approach. It is shown that a small seed of m=0m=0 atoms on a system with initially well separated m=1 and m=-1 condensates has a dramatic effect on their mixing dynamics, acting as an effective barrier for a remarkably long time. We show that this effect is due to the spinor character of the system, and provides an observable example of the interplay between the internal spin dynamics and the macroscopic evolution of the magnetization in a spinor Bose-Einstein condensate.Comment: Accepted for publication at the Europhysics Letter

    Spherical model of the Stark effect in external scalar and vector fields

    Full text link
    The Bohr-Sommerfeld quantization rule and the Gamow formula for the width of quasistationary level are generalized by taking into account the relativistic effects, spin and Lorentz structure of interaction potentials. The relativistic quasi-classical theory of ionization of the Coulomb system (V_{Coul}=-\xi/r) by radial-constant long-range scalar (S_{l.r.}=(1-\lambda)(\sigma r+V_0)) and vector (V_{l.r.}=\lambda(\sigma r+V_0)) fields is constructed. In the limiting cases the approximated analytical expressions for the position E_r and width \Gamma of below-barrier resonances are obtained. The strong dependence of the width \Gamma of below-barrier resonances on both the bound level energy and the mixing constant \lambda is detected. The simple analytical formulae for asymptotic coefficients of the Dirac radial wave functions at zero and infinity are also obtained.Comment: 25 pages, 4 figures. Submitted to Int. J. Mod. Phys.

    The quasiclassical theory of the Dirac equation with a scalar-vector interaction and its applications in the theory of heavy-light mesons

    Full text link
    We construct a relativistic potential quark model of DD, DsD_s, BB, and BsB_s mesons in which the light quark motion is described by the Dirac equation with a scalar-vector interaction and the heavy quark is considered a local source of the gluon field. The effective interquark interaction is described by a combination of the perturbative one-gluon exchange potential VCoul(r)=ξ/rV_{\mathrm{Coul}}(r)=-\xi/r and the long-range Lorentz-scalar and Lorentz-vector linear potentials Sl.r.(r)=(1λ)(σr+V0)S_{\mathrm{l.r.}}(r)=(1-\lambda)(\sigma r+V_0) and Vl.r.(r)=λ(σr+V0)V_{\mathrm{l.r.}}(r)=\lambda(\sigma r+V_0), where 0λ<1/20\leqslant\lambda<1/2. Within the quasiclassical approximation, we obtain simple asymptotic formulas for the energy and mass spectra and for the mean radii of DD, DsD_s, BB, and BsB_s mesons, which ensure a high accuracy of calculations even for states with the radial quantum number nr1n_r\sim 1. We show that the fine structure of P-wave states in heavy-light mesons is primarily sensitive to the choice of two parameters: the strong-coupling constant αs\alpha_s and the coefficient λ\lambda of mixing of the long-range scalar and vector potentials Sl.r.(r)S_{\mathrm{l.r.}}(r) and Vl.r.(r)V_{\mathrm{l.r.}}(r). The quasiclassical formulas for asymptotic coefficients of wave function at zero and infinity are obtained.Comment: 22 pages, 6 figure

    Shell-like structures in our cosmic neighbourhood

    Full text link
    Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8. We calculate the distance distributions between rich clusters of galaxies, and groups and clusters of various richness, look for the maxima in the distance distributions, and select candidates of shell-like structures. We analyse the space distribution of groups and clusters forming shell walls. We find six possible candidates of shell-like structures, in which galaxy clusters have maxima in the distance distribution to other galaxy groups and clusters at the distance of about 120 Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of other groups and clusters around them at the distance of about 120 Mpc/h among our rich cluster sample, and another maximum at the distance of about 240 Mpc/h. The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost complete shell of galaxy groups, clusters and superclusters. The richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster and the Ursa Major supercluster are among them. The probability that we obtain maxima like this from random distributions is lower than 0.001. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a BAO shell (approximately 109 Mpc/h versus approximately 120 Mpc/h), and they are determined by very rich galaxy clusters and superclusters with high density contrast while BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences.Comment: Comments: 9 pages, 10 figures, Astronomy and Astrophysics, in pres

    The distribution of the economic activity in European region: identification of cluster

    Full text link
    Agglomeration economies play an important role in the explanation of the development and regional growth. For this reason, there exists a growing interest in the analysis of standards of co-localisation of the economic activities. This topic has been dealt with from different approaches using a good number of technical statistics. Our proposal is to present some of the more well-known statistics usually used in epidemiology, with the objective of identifying spatial clusters of companies dedicated to the same economic activity. As such, this paper analyses the geographic distribution of economic activity throughout the Mediterranean to the smallest possible level of spatial integration (post code level). Firstly, by using exploratory analysis tools of spatial data we identify patterns of localisation of economic activity including both industrial and service areas. Secondly, by using the statistics of T. Tango (1995) and M. Kulldorff (1997) we identify clusters of businesses in distinct subsectors of activity. The information is obtained from the 'Sistema Anual de Balances Ibéricos' (SABI) database and using the National Classification of Economic Activities NCEA code to a 2 digit level. Our results highlight that great differences exist in the production geographic concentration in all sectors. Additionally, the results from our analysis also reveal that well defined groups exist within the economic sectors
    corecore