1,895 research outputs found
Discipline report on thermal analyses of M551, M552, and M553 experiments
Reduced gravity does not significantly affect the thermal histories in the M551 specimen, even if molten metal flow pattern is different from that in terrestrial conditions. Thermal histories corresponding to terrestrial experimental conditions were calculated by use of the computer programs. Heat conduction through brazing alloy (M552 experiment) is improved in the Skylab conditions, because of the increased extent, rate and uniformity of braze spreading in space. Effects of reduced gravity on heat flow in the M553 specimen are insignificant, because convection effects appear instantaneously and conduction is a governing factor on the heat flow
Thermal analysis of M552 experiment for materials processing in space
Analytical and experimental studies made of heat flow in the exothermic brazing unit in the M552 experiment are described. The emphasis of the studies was placed on heat flow in the tube and the sleeve during a period from ignition to the time when the brazing alloy solidifies. Experiments were made of three specimens tested in a ground-based laboratory. Heat flow was determined by thermocouples. The analytical study covered two phases: (1) the effect of reduced gravity on heat flow in the exothermic brazing unit; and (2) the development of analytical models. The major mode of heat transfer was conduction and the effect of gravity was minimal. Good agreements were obtained between experimental and analytical results indicating the soundness of the analytical models
Power Spectra of X-ray Binaries
The interpretation of Fourier spectra in the time domain is critically
examined. Power density spectra defined and calculated in the time domain are
compared with Fourier spectra in the frequency domain for three different types
of variability: periodic signals, Markov processes and random shots. The power
density spectra for a sample of neutron stars and black hole binaries are
analyzed in both the time and the frequency domains. For broadband noise, the
two kinds of power spectrum in accreting neutron stars are usually consistent
with each other, but the time domain power spectra for black hole candidates
are significantly higher than corresponding Fourier spectra in the high
frequency range (10--1000 Hz). Comparing the two kinds of power density spectra
may help to probe the intrinsic nature of timing phenomena in compact objects.Comment: 21 pages, 10 figures, to appear in Astrophysical Journa
Analysis of thermal stresses and metal movement during welding
Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process
Intrinsic gap and exciton condensation in the nu_T=1 bilayer system
We investigate the quasiparticle excitation of the bilayer quantum Hall (QH)
system at total filling factor in the limit of
negligible interlayer tunneling under tilted magnetic field. We show that the
intrinsic quasiparticle excitation is of purely pseudospin origin and solely
governed by the inter- and intra-layer electron interactions. A model based on
exciton formation successfully explains the quantitative behavior of the
quasiparticle excitation gap, demonstrating the existence of a link between the
excitonic QH state and the composite fermion liquid. Our results provide a new
insight into the nature of the phase transition between the two states.Comment: 4 pages, 3 figure
Measurement by FIB on the ISS: Two Emissions of Solar Neutrons Detected?
A new type of solar neutron detector (FIB) was launched onboard the Space
Shuttle Endeavour on July 16, 2009, and it began collecting data at the
International Space Station (ISS) on August 25, 2009. This paper summarizes the
three years of observations obtained by the solar neutron detector FIB until
the end of July 2012. The solar neutron detector FIB can determine both the
energy and arrival direction of neutrons. We measured the energy spectra of
background neutrons over the SAA region and elsewhere, and found the typical
trigger rates to be 20 counts/sec and 0.22 counts/sec, respectively. It is
possible to identify solar neutrons to within a level of 0.028 counts/sec,
provided that directional information is applied. Solar neutrons were observed
in association with the M-class solar flares that occurred on March 7 (M3.7)
and June 7 (M2.5) of 2011. This marked the first time that neutrons were
observed in M-class solar flares. A possible interpretaion of the prodcution
process is provided.Comment: 36 pages, 16 figures, and 3 Tables; Advanced in Astronmy, 2012,
Special issue on Cosmic Ray Variablity:Century of Its Obseravtion
- …
