179 research outputs found
Tagger design optimization
This note presents the simulations and tests performed at LPSC Grenoble for the optimization of the DVCS tagger paddles. The choice of the wrapping material and the addition of a light guide with a specific triangular cut are discussed and confronted to experimental measurements. This study led to the final configuration of the DVCS tagger
Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
Theoretical approach based on Monte-Carlo simulations to predict the cell survival following BNCT
International audienceWe present here a very preliminary work on BNCT Dosimetry. The approach is as follows:A full Monte Carlo calculation is used to separate all dose components and determine the corresponding physical dose fractions with a realistic clinical model.These dose fractions are then used as mixed fields to predict cell-survivals and RBE values for a specific cell-line, thanks to the radiobiological model NanOxTM
Production of highly-polarized positrons using polarized electrons at MeV energies
The Polarized Electrons for Polarized Positrons experiment at the injector of
the Continuous Electron Beam Accelerator Facility has demonstrated for the
first time the efficient transfer of polarization from electrons to positrons
produced by the polarized bremsstrahlung radiation induced by a polarized
electron beam in a high- target. Positron polarization up to 82\% have been
measured for an initial electron beam momentum of 8.19~MeV/, limited only by
the electron beam polarization. This technique extends polarized positron
capabilities from GeV to MeV electron beams, and opens access to polarized
positron beam physics to a wide community.Comment: 5 pages, 4 figure
Performance of prototypes for the ALICE electromagnetic calorimeter
The performance of prototypes for the ALICE electromagnetic sampling
calorimeter has been studied in test beam measurements at FNAL and CERN. A
array of final design modules showed an energy resolution of about
11% / 1.7 % with a uniformity of the response
to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV.
The electromagnetic shower position resolution was found to be described by 1.5
mm 5.3 mm /. For an electron identification
efficiency of 90% a hadron rejection factor of was obtained.Comment: 10 pages, 10 figure
Performance of the ATLAS electromagnetic calorimeter end-cap module 0
The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 eta 3.2 (inner wheel)
Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter
The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given
MIMAC: A micro-tpc matrix for dark matter directional detection
The dark matter directional detection opens a new field in cosmology bringing
the possibility to build a map of nuclear recoils that would be able to explore
the galactic dark matter halo giving access to a particle characterization of
such matter and the shape of the halo. The MIMAC (MIcro-tpc MAtrix of Chambers)
collaboration has developed in the last years an original prototype detector
based on the direct coupling of large pixelized micromegas with a devoted fast
self-triggered electronics showing the feasibility of a new generation of
directional detectors. The discovery potential of this search strategy is
discussed and illustrated. In June 2012, the first bi-chamber prototype has
been installed at Modane Underground Laboratory (LSM) and the first underground
background events, the gain stability and calibration are shown.Comment: Proceedings of the 6th Symposium on Large TPCs for low energy rare
event detection, Paris, December 201
- …
