58 research outputs found
Momentum Broadening in an Anisotropic Plasma
The rates governing momentum broadening in a quark-gluon plasma with a
momentum anisotropy are calculated to leading-log order for a heavy quark using
kinetic theory. It is shown how the problematic singularity for these rates at
leading-oder is lifted by next-to-leading order gluon self-energy corrections
to give a finite contribution to the leading-log result. The resulting rates
are shown to lead to larger momentum broadening along the beam axis than in the
transverse plane, which is consistent with recent STAR results. This might
indicate that the quark-gluon-plasma at RHIC is not in equilibrium.Comment: 14 pages, 2 figures, uses revtex4; see source for numerics; v2: typos
corrected, note added in appendix, matches published versio
Tsunamis, Viscosity and the HBT Puzzle
The equation of state and bulk and shear viscosities are shown to be able to
affect the transverse dynamics of a central heavy ion collision. The net
entropy, along with the femtoscopic radii are shown to be affected at the
10-20% level by both shear and bulk viscosity. The degree to which these
effects help build a tsunami-like pulse is also discussed.Comment: Contribution to SQM 2007 in Levoca, Slovaki
Relativistic dissipative hydrodynamics with extended matching conditions for ultra-relativistic heavy-ion collisions
Recently we proposed a novel approach to the formulation of relativistic
dissipative hydrodynamics by extending the so-called matching conditions in the
Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906]. We extend this formalism
further to the arbitrary Lorentz frame. We discuss the stability and causality
of solutions of fluid equations which are obtained by applying this formulation
to the Landau frame, which is more relevant to treat the fluid produced in
ultra-relativistic heavy-ion collisions. We derive equations of motion for a
relativistic dissipative fluid with zero baryon chemical potential and show
that linearized equations obtained from them are stable against small
perturbations. It is found that conditions for a fluid to be stable against
infinitesimal perturbations are equivalent to imposing restrictions that the
sound wave, , propagating in the fluid, must not exceed the speed of light
, i.e., . This conclusion is equivalent to that obtained in the
previous paper using the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906].Comment: 2nd version. Typos corrected. 7 pages. Contribution to The European
Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic
Hydro- and Thermodynamics in Nuclear Physics
Strangeness counting in high energy collisions
The estimates of overall strange quark production in high energy e+e-, pp and
ppbar collisions by using the statistical-thermal model of hadronisation are
presented and compared with previous works. The parametrization of strangeness
suppression within the model is discussed. Interesting regularities emerge in
the strange/non-strange produced quark ratio which turns out to be fairly
constant in elementary collisions while it is twice as large in SPS heavy ion
collision.Comment: talk given at Strangeness in Quark Matter 98, submitted to J. Phys.
Transport coefficients, spectral functions and the lattice
Transport coefficients are determined by the slope of spectral functions of
composite operators at zero frequency. We study the spectral function relevant
for the shear viscosity for arbitrary frequencies in weakly-coupled scalar and
nonabelian gauge theories at high temperature and compute the corresponding
correlator in euclidean time. We discuss whether nonperturbative values of
transport coefficients can be extracted from euclidean lattice simulations.Comment: 25 pages with 7 eps figures, discussion improved, acknowledgement
added; to appear in JHE
Hydrodynamics and Flow
In this lecture note, we present several topics on relativistic hydrodynamics
and its application to relativistic heavy ion collisions. In the first part we
give a brief introduction to relativistic hydrodynamics in the context of heavy
ion collisions. In the second part we present the formalism and some
fundamental aspects of relativistic ideal and viscous hydrodynamics. In the
third part, we start with some basic checks of the fundamental observables
followed by discussion of collective flow, in particular elliptic flow, which
is one of the most exciting phenomenon in heavy ion collisions at relativistic
energies. Next we discuss how to formulate the hydrodynamic model to describe
dynamics of heavy ion collisions. Finally, we conclude the third part of the
lecture note by showing some results from ideal hydrodynamic calculations and
by comparing them with the experimental data.Comment: 40 pages, 35 figures; lecture given at the QGP Winter School, Jaipur,
India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic
Hydrodynamics at RHIC -- how well does it work, where and how does it break down?
I review the successes and limitations of the ideal fluid dynamic model in
describing hadron emission spectra from Au+Au collisions at the Relativistic
Heavy Ion Collider (RHIC).Comment: 8 pages, 4 figures. Invited talk presented at Strange Quark Matter
2004 (Cape Town, Sep. 15-20, 2004). Proceedings to appear in Journal of
Physics
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
Shear Viscosity in the O(N) Model
We compute the shear viscosity in the O(N) model at first nontrivial order in
the large N expansion. The calculation is organized using the 1/N expansion of
the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which
leads to an integral equation summing ladder and bubble diagrams. We also
consider the weakly coupled theory for arbitrary N, using the three-loop
expansion of the 2PI effective action. In the limit of weak coupling and
vanishing mass, we find an approximate analytical solution of the integral
equation. For general coupling and mass, the integral equation is solved
numerically using a variational approach. The shear viscosity turns out to be
close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE
- …
