17,442 research outputs found
The influence of thermal storage on microgeneration flexibility
In a future power system, the ability to manipulate generation and load will be a critical factor in providing a secure and stable supply of electrical energy to consumers. Using a simulation-based approach, this study assesses the ability of thermal storage to help deliver flexibility in the operation of domestic micro-generation technologies without sacrificing householder comfort and convenience. A typical UK detached dwelling is modelled along with its heating system, which features a retro-fitted air source heat pump (ASHP). The model is used to determine the maximum possible temporal shift for different capacities and configurations of thermal storage, taking into account the influence of climate, building fabric, control settings and occupancy. The limits of time shifting are dictated by the living space temperature and the hot water temperature delivered to the occupants. The storage mechanisms examined are: the basic thermal inertia of the building fabric; increasing the space heating set point temperatures to increase fabric storage and inserting a dedicated thermal buffer between the ASHP and the heat distribution system. The simulation results indicate that back-shifting of the ASHP start/stop times of between one and two hours are possible without causing serious discomfort or inconvenience to the occupants
Correlation between the charged kaon ratio and the baryon phase-space density in heavy-ion collisions
It is found that the baryon phase-space density obtained from the ratio of
deuteron to proton yields is nearly constant over centrality in Au+Au
collisions at the AGS. The finding offers an explanation for the puzzling
centrality independence of the ratio of charged kaon total yields. The
correlation between the charged kaon ratio and the average baryon phase-space
density is studied for central heavy-ion collisions of various systems over a
wide range of beam energy. It is found that the charged kaon ratio and the
average baryon phase-space density both increase with decreasing beam energy,
and are strongly correlated. Such study may provide a new approach to search
for medium effect on the kaon mass.Comment: 5 pages, 3 figures, 1 table in revtex styl
Feasibility vs. Optimality in Distributed AC OPF - A Case Study Considering ADMM and ALADIN
This paper investigates the role of feasible initial guesses and large
consensus-violation penalization in distributed optimization for Optimal Power
Flow (OPF) problems. Specifically, we discuss the behavior of the Alternating
Direction of Multipliers Method (ADMM). We show that in case of large
consensus-violation penalization ADMM might exhibit slow progress. We support
this observation by an analysis of the algorithmic properties of ADMM.
Furthermore, we illustrate our findings considering the IEEE 57 bus system and
we draw upon a comparison of ADMM and the Augmented Lagrangian Alternating
Direction Inexact Newton (ALADIN) method
Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results
We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3′ of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio
Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel.
α-Synuclein (aSyn) fibrillar polymorphs have distinct in vitro and in vivo seeding activities, contributing differently to synucleinopathies. Despite numerous prior attempts, how polymorphic aSyn fibrils differ in atomic structure remains elusive. Here, we present fibril polymorphs from the full-length recombinant human aSyn and their seeding capacity and cytotoxicity in vitro. By cryo-electron microscopy helical reconstruction, we determine the structures of the two predominant species, a rod and a twister, both at 3.7 Å resolution. Our atomic models reveal that both polymorphs share a kernel structure of a bent β-arch, but differ in their inter-protofilament interfaces. Thus, different packing of the same kernel structure gives rise to distinct fibril polymorphs. Analyses of disease-related familial mutations suggest their potential contribution to the pathogenesis of synucleinopathies by altering population distribution of the fibril polymorphs. Drug design targeting amyloid fibrils in neurodegenerative diseases should consider the formation and distribution of concurrent fibril polymorphs
Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.
The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials
Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia
This project is supported by National Centre for Groundwater Research and Training (NCGRT, Australia). The first author is supported by China Scholarship Council and NCGRT for his PhD study at Flinders University of South Australia. Xiang Xu and Yunhui Guo provided assistance in the field. Constructive comments and suggestion from three anonymous reviewers significantly improve the manuscript. This article also appears in: Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling and Data Assimilation.Peer reviewedPublisher PD
Maximal planar networks with large clustering coefficient and power-law degree distribution
In this article, we propose a simple rule that generates scale-free networks
with very large clustering coefficient and very small average distance. These
networks are called {\bf Random Apollonian Networks}(RAN) as they can be
considered as a variation of Apollonian networks. We obtain the analytic
results of power-law exponent and clustering coefficient
, which agree very well with the
simulation results. We prove that the increasing tendency of average distance
of RAN is a little slower than the logarithm of the number of nodes in RAN.
Since most real-life networks are both scale-free and small-world networks, RAN
may perform well in mimicking the reality. The RAN possess hierarchical
structure as that in accord with the observations of many
real-life networks. In addition, we prove that RAN are maximal planar networks,
which are of particular practicability for layout of printed circuits and so
on. The percolation and epidemic spreading process are also studies and the
comparison between RAN and Barab\'{a}si-Albert(BA) as well as Newman-Watts(NW)
networks are shown. We find that, when the network order (the total number
of nodes) is relatively small(as ), the performance of RAN under
intentional attack is not sensitive to , while that of BA networks is much
affected by . And the diseases spread slower in RAN than BA networks during
the outbreaks, indicating that the large clustering coefficient may slower the
spreading velocity especially in the outbreaks.Comment: 13 pages, 10 figure
Sequential Quasi-Monte Carlo
We derive and study SQMC (Sequential Quasi-Monte Carlo), a class of
algorithms obtained by introducing QMC point sets in particle filtering. SQMC
is related to, and may be seen as an extension of, the array-RQMC algorithm of
L'Ecuyer et al. (2006). The complexity of SQMC is , where is
the number of simulations at each iteration, and its error rate is smaller than
the Monte Carlo rate . The only requirement to implement SQMC is
the ability to write the simulation of particle given as a
deterministic function of and a fixed number of uniform variates.
We show that SQMC is amenable to the same extensions as standard SMC, such as
forward smoothing, backward smoothing, unbiased likelihood evaluation, and so
on. In particular, SQMC may replace SMC within a PMCMC (particle Markov chain
Monte Carlo) algorithm. We establish several convergence results. We provide
numerical evidence that SQMC may significantly outperform SMC in practical
scenarios.Comment: 55 pages, 10 figures (final version
The Transit Light Curve of an Exozodiacal Dust Cloud
Planets embedded within debris disks gravitationally perturb nearby dust and
can create clumpy, azimuthally asymmetric circumstellar ring structures that
rotate in lock with the planet. The Earth creates one such structure in the
solar zodiacal dust cloud. In an edge-on system, the dust "clumps" periodically
pass in front of the star as the planet orbits, occulting and
forward-scattering starlight. In this paper, we predict the shape and magnitude
of the corresponding transit signal. To do so, we model the dust distributions
of collisional, steady-state exozodiacal clouds perturbed by planetary
companions. We examine disks with dusty ring structures formed by the planet's
resonant trapping of in-spiraling dust for a range of planet masses and
semi-major axes, dust properties, and disk masses. We synthesize edge-on images
of these models and calculate the transit signatures of the resonant ring
structures. The transit light curves created by dusty resonant ring structures
typically exhibit two broad transit minima that lead and trail the planetary
transit. We find that Jupiter-mass planets embedded within disks hundreds of
times denser than our zodiacal cloud can create resonant ring structures with
transit depths up to , possibly detectable with \emph{Kepler}.
Resonant rings produced by planets more or less massive than Jupiter produce
smaller transit depths. Observations of these transit signals may provide upper
limits on the degree of asymmetry in exozodiacal clouds.Comment: 31 pages, 7 figure
- …
