599 research outputs found

    The Chagos Islands cases: the empire strikes back

    Get PDF
    Good governance requires the accommodation of multiple interests in the cause of decision making. However, undue regard for particular sectional interests can take their toll upon public faith in government administration. Historically, broad conceptions of the good of the commonwealth were employed to outweigh the interests of groups that resisted colonisation. In the decision making of the British Empire, the standard approach for justifying the marginalisation of the interests of colonised groups was that they were uncivilised and that particular hardships were the price to be paid for bringing to them the imperial dividend of industrial society. It is widely assumed that with the dismantling of the British Empire, such impulses and their accompanying jurisprudence became a thing of the past. Even as decolonisation proceeded apace after the Second World War, however, the United Kingdom maintained control of strategically important islands with a view towards sustaining its global role. In an infamous example from this twilight period of empire, in the 1960s imperial interests were used to justify the expulsion of the Chagos islanders from the British Indian Ocean Territory (BIOT). Into the twenty-first century, this forced elision of the UK’s interests with the imperial “common good” continues to take centre stage in courtroom battles over the islanders’ rights, being cited before domestic and international tribunals in order to maintain the Chagossians’ exclusion from their homeland. This article considers the new jurisprudence of imperialism which has emerged in a string of decisions which have continued to marginalise the Chagossians’ interests

    Assessing the Efficacy of Nano- and Micro-Sized Magnetic Particles as Contrast Agents for MRI Cell Tracking

    Get PDF
    Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI) of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the ‘3Rs’, the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy

    Get PDF
    Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo

    Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis

    Get PDF
    This document is the Accepted Manuscript version of the following article: Riessland et al., 'Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis', The American Journal of Human Genetics, Vol. 100 (2): 297-315, first published online 26 January 2017. The final, published version is available online at doi: http://dx.doi.org/10.1016/j.ajhg.2017.01.005 © 2017 American Society of Human Genetics.Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca(2+)-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.Peer reviewedFinal Accepted Versio

    Magnetic resonance imaging for characterization of a chick embryo model of cancer cell metastases

    Get PDF
    Background: Metastasis is the most common cause of death for cancer patients, hence its study has rapidly expanded over the past few years. To fully understand all the steps involved in metastatic dissemination, in vivo models are required, of which murine ones are the most common. Therefore pre-clinical imaging methods have mainly been developed for small mammals. However, the potential of preclinical imaging techniques such as magnetic resonance imaging (MRI) to monitor cancer growth and metastasis in non-mammalian in vivo models is not commonly used. We have here used MRI to measure primary neuroblastoma tumour size and presence of metastatic dissemination in a chick embryo model. We compared its sensitivity and accuracy to end-point fluorescence detection. Methods: Human neuroblastoma cells were labelled with GFP and micron-sized iron particles (MPIOs) and implanted on the extraembryonic chorioallantoic membrane of the chick embryo at E7. T2 RARE, T2 weighted FLASH as well as time-of-flight MR angiography imaging was applied at E14. Primary tumours as well as metastatic deposits in the chick embryo were dissected post imaging to compare with MRI results. Results: MPIO labelling of neuroblastoma cells allowed in ovo observation of the primary tumour and tumour volume measurement non-invasively over time. Moreover, T2 weighted and FLASH imaging permitted the detection of very small metastatic deposits in the chick embryo. Conclusions: The use of contrast agents enabled the detection of metastatic deposits of neuroblastoma cells in a chick embryo model, thereby reinforcing the potential of this cost efficient and convenient, 3R compliant, in vivo model for cancer research
    corecore