3,907 research outputs found

    Higher dimensional thin-shell wormholes in Einstein-Yang-Mills-Gauss-Bonnet gravity

    Full text link
    We present thin-shell wormhole solutions in Einstein-Yang-Mills-Gauss-Bonnet (EYMGB) theory in higher dimensions d\geq5. Exact black hole solutions are employed for this purpose where the radius of thin-shell lies outside the event horizon. For some reasons the cases d=5 and d>5 are treated separately. The surface energy-momentum of the thin-shell creates surface pressures to resist against collapse and rendering stable wormholes possible. We test the stability of the wormholes against spherical perturbations through a linear energy-pressure relation and plot stability regions. Apart from this restricted stability we investigate the possibility of normal (i.e. non-exotic) matter which satisfies the energy conditions. For negative values of the Gauss-Bonnet (GB) parameter we obtain such physical wormholes.Comment: 9 pages, 6 figures. Dedicated to the memory of Rev. Ibrahim Eken (1927-2010) of Turke

    A Newman-Penrose Calculator for Instanton Metrics

    Full text link
    We present a Maple11+GRTensorII based symbolic calculator for instanton metrics using Newman-Penrose formalism. Gravitational instantons are exact solutions of Einstein's vacuum field equations with Euclidean signature. The Newman-Penrose formalism, which supplies a toolbox for studying the exact solutions of Einstein's field equations, was adopted to the instanton case and our code translates it for the computational use.Comment: 13 pages. Matches the published version. The web page of the codes is changed as https://github.com/tbirkandan/NPInstanto

    Thermo-elasticity for anisotropic media in higher dimensions

    Full text link
    In this note we develop tools to study the Cauchy problem for the system of thermo-elasticity in higher dimensions. The theory is developed for general homogeneous anisotropic media under non-degeneracy conditions. For degenerate cases a method of treatment is sketched and for the cases of cubic media and hexagonal media detailed studies are provided.Comment: 33 pages, 5 figure

    Lax pair tensors in arbitrary dimensions

    Full text link
    A recipe is presented for obtaining Lax tensors for any n-dimensional Hamiltonian system admitting a Lax representation of dimension n. Our approach is to use the Jacobi geometry and coupling-constant metamorphosis to obtain a geometric Lax formulation. We also exploit the results to construct integrable spacetimes, satisfying the weak energy condition.Comment: 8 pages, uses IOP style files. Minor correction. Submitted to J. Phys

    A note on a third order curvature invariant in static spacetimes

    Get PDF
    We consider here the third order curvature invariant I=Rμνρσ;δRμνρσ;δI=R_{\mu\nu\rho\sigma;\delta}R^{\mu\nu\rho\sigma;\delta} in static spacetimes M=R×Σ{\cal M}=R\times\Sigma for which Σ\Sigma is conformally flat. We evaluate explicitly the invariant for the NN-dimensional Majumdar-Papapetrou multi black-holes solution, confirming that II does indeed vanish on the event horizons of such black-holes. Our calculations show, however, that solely the vanishing of II is not sufficient to locate an event horizon in non-spherically symmetric spacetimes. We discuss also some tidal effects associated to the invariant II.Comment: 5 pages, 3 figures. Extra material available at http://vigo.ime.unicamp.br/in
    corecore