52 research outputs found

    The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNA-126 is the only microRNA (miRNA) known to be endothelial cell-specific influencing angiogenesis in several ways. The aim of the present study was to analyse the possible predictive value of miRNA-126 in relation to first line capecitabine and oxaliplatin (XELOX) in patients with metastatic colorectal cancer (mCRC).</p> <p>Methods</p> <p>The study included 89 patients with mCRC. <it>In situ </it>hybridization (ISH) was performed to detect miRNA-126 in formalin-fixed paraffin embedded tissue from primary tumours. The expression of miRNA-126, area per image (μm<sup>2</sup>), was measured using image analysis. Clinical response was evaluated according to RECIST. Progression free survival (PFS) was compared using the Kaplan-Meier method and the log rank test. Tumours were classified as low or high miRNA-126 expressing tumours using the median value from the patients with response as cut-off.</p> <p>Results</p> <p>The median miRNA-126 expression level was significantly higher in patients responding to XELOX, 3629 μm<sup>2 </sup>(95% CI, 2566-4846), compared to the patients not responding, 1670 μm<sup>2 </sup>(95% CI, 1436-2041), <it>p </it>< 0.0001. The positive predictive value was 90%, and the negative predictive value was 71%. The median PFS of patients with high expressing tumours was 11.5 months (95% CI, 9.0-12.7 months) compared to 6.0 months (95% CI, 4.8-6.9 months) for patients with low expressing tumours, <it>p </it>< 0.0001.</p> <p>Conclusions</p> <p>Angiogenesis quantified by ISH of miRNA-126 was related to response to first line XELOX in patients with mCRC, translating to a significant difference in PFS. The predictive value of miRNA-126 remains to be further elucidated in prospective studies.</p

    Experimental Verification of a Predicted Intronic MicroRNA in Human NGFR Gene with a Potential Pro-Apoptotic Function

    Get PDF
    Neurotrophins (NTs) are a family of secreted growth factor proteins primarily involved in the regulation of survival and appropriate development of neural cells, functioning by binding to their specific (TrkA, TtkB, and TrkC) and/or common NGFR receptor. NGFR is the common receptor of NTs, binding with low-affinity to all members of the family. Among different functions assigned to NGFR, it is also involved in apoptosis induction and tumorigenesis processes. Interestingly, some of the functions of NGFR appear to be ligand-independent, suggesting a probable involvement of non-coding RNA residing within the sequence of the gene. Here, we are reporting the existence of a conserved putative microRNA, named Hsa-mir-6165 [EBI accession#: FR873488]. Transfection of a DNA segment corresponding to the pre-mir-6165 sequence in Hela cell line caused the generation of mature exogenous mir-6165 (a ∼200,000 fold overexpression). Furthermore, using specific primers, we succeeded to detect the endogenous expression of mir-6165 in several glioma cell lines and glioma primary tumors known to express NGFR. Similar to the pro-apoptotic role of NGFR in some cell types, overexpression of pre-mir-6165 in U87 cell line resulted in an elevated rate of apoptosis. Moreover, coordinated with the increased level of mir-6165 in the transfected U87 cell line, two of its predicted target genes (Pkd1 and DAGLA) were significantly down-regulated. The latter findings suggest that some of the previously attributed functions of NGFR could be explained indirectly by co-transcription of mir-6165 in the cells

    Cognitive and Pragmatic Peculiarities of Parable Analysis

    Get PDF
    У статті розглянуто особливості когнітивно-прагматичного підходу до дослідження притчі. Автор дослід- жує зміст морально-ціннісних утворень свідомості, ментальних процесів та особливостей художнього спри- йняття особистості в межах притчевого дискурсу. The cognitive and pragmatic peculiarities of parable analysis are investigated in the paper. The author analyses the content of moral-axiological formation in mind, person’s mental processes and aesthetic perception peculiarities in the scope of a parable discours

    Cellular La Protein Shields Nonsegmented Negative-Strand RNA Viral Leader RNA from RIG-I and Enhances Virus Growth by Diverse Mechanisms▿

    No full text
    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism

    Genome-Wide Polysome Profiling Reveals an Inflammation-Responsive Posttranscriptional Operon in Gamma Interferon-Activated Monocytes

    No full text
    We previously showed that ribosomal protein L13a is required for translational silencing of gamma interferon (IFN-γ)-induced ceruloplasmin (Cp) synthesis in monocytes. This silencing also requires the presence of the GAIT (IFN-gamma activated inhibitor of translation) element in the 3′ untranslated region (UTR) of Cp mRNA. Considering that Cp is an inflammatory protein, we hypothesized that this mechanism may have evolved to silence a family of proinflammatory proteins, of which Cp is just one member. To identify the other mRNAs that are targets for this silencing, we performed a genome-wide analysis of the polysome-profiled mRNAs by using an Affymetrix GeneChip and an inflammation-responsive gene array. A cluster of mRNAs encoding different chemokines and their receptors was identified as common hits in the two approaches and validated by real-time PCR. In silico predicted GAIT hairpins in the 3′ UTRs of the target mRNAs were confirmed as functional cis-acting elements for translational silencing by luciferase reporter assays. Consistent with Cp, the newly identified target mRNAs also required L13a for silencing. Our studies have identified a new inflammation-responsive posttranscriptional operon that can be regulated directly at the level of translation in IFN-γ-activated monocytes. This regulation of a cohort of mRNAs encoding inflammatory proteins may be important to resolve inflammation

    Quantitative proteomics and phosphoproteomics of PPP2R5D variants reveal deregulation of RPS6 phosphorylation through converging signaling cascades

    Full text link
    AbstractVariants in the phosphoprotein phosphatase-2 regulatory protein-5D gene (PPP2R5D) cause the clinical phenotype of Jordan’s Syndrome (PPP2R5D-related disorder), which includes intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder and delayed motor skill development. The disorder originates fromde novosingle nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G&gt;A) in thePPP2R5Dallele in a heterozygous manner in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of wild-type, E198K, and E420K cell lines and find unique and shared changes between variants and wild-type cells in kinase- and phosphatase-controlled signaling cascades. As shared signaling alterations, we observed ribosomal protein S6 (RPS6) hyperphosphorylation, indicative of increased ribosomal protein S6-kinase activity. Rapamycin treatment suppressed RPS6 phosphorylation in both, suggesting activation of mTORC1. Intriguingly, our data suggest AKT-dependent (E420K) and -independent (E198K) activation of mTORC1. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, treatment with rapamycin or a p70S6K inhibitor warrants further investigation as potential therapeutic strategies for patients.</jats:p

    Abstract 5174: Phosphodiesterase 10A inhibition as a novel approach to suppress β-catenin signaling in ovarian cancer cells

    Full text link
    Abstract Canonical Wnt/β-catenin signaling is known to be associated with platinum resistance in ovarian cancer in which inhibitors hold promise for the treatment of refractory disease. Phosphodiesterase 10A (PDE10A) is a dual cyclic AMP and cyclic GMP phosphodiesterase isozyme recently implicated in colon cancer. PDE10A inhibition in colon cancer cells by siRNA or small molecule inhibitors increased cGMP levels and activated PKG to inhibit β-catenin signaling. A novel PDE10 inhibitor, ADT-061, was identified by screening a library of indene derivatives, and showed strong antineoplastic activity in the Apc+/min-FCCC mouse (Lee K et al., unpublished data). Cyclic GMP and phosphodiesterases participate in the ovarian follicular development, although little is known about PDE10A expression in ovaries, especially with regard to a potential role in ovarian tumorigenesis. PDE10A protein was found to be expressed in various established ovarian cancer cell lines at higher levels than immortalized or primary ovarian surface epithelial cell lines. Pf-2545920, a known PDE10A inhibitor, and ADT-061 inhibited the growth of multiple ovarian tumor cell lines with IC50s around 20µM and 0.5µM, respectively. Both compounds induced apoptosis after 24h treatment, as measured by PI/Annexin-V staining and PARP cleavage. Pf-2545920 and ADT-061 induced phosphorylation of VASP at Ser157 and Ser239 in various ovarian cancer cell lines, indicating activation of cyclic AMP and cyclic GMP signaling, respectively. Treatment also decreased levels of β-catenin and downstream targets of TCF-dependent transcription, including c-MYC, survivin and cyclin-D1. Homozygous knockout PDE10A clones of OV-90 ovarian cancer cells obtained using CRISPR/Cas9 showed decreased clonogenic potential, decreased Pf-2545920-mediated VASP phosphorylation and β-catenin, c-MYC and survivin expression. Ongoing efforts are focused on the development of more potent ADT-061 analogs. These observations support further study of a role of PDE10 in ovarian tumorigenesis and the development of ADT-061 or analogs for the treatment of refractory ovarian cancer as well as the prevention of malignant recurrence. Citation Format: Luciana Madeira Da Silva, Elaine Gavin, Kevin J. Lee, Veronica Ramírez-Alcántara, Kristy L. Berry, Holly T. Taylor, Alla Musiyenko, Ileana V. Aragon, Adam B. Keeton, Jennifer Scalici, Rodney P. Rocconi, Gary A. Piazza. Phosphodiesterase 10A inhibition as a novel approach to suppress β-catenin signaling in ovarian cancer cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5174. doi:10.1158/1538-7445.AM2017-5174</jats:p
    corecore