3,473 research outputs found

    The Bianchi-Darboux transform of L-isothermic surfaces

    Full text link
    We study an analogue of the classical Bianchi-Darboux transformation for L-isothermic surfaces in Laguerre geometry, the Bianchi-Darboux transformation. We show how to construct the Bianchi-Darboux transforms of an L-isothermic surface by solving an integrable linear differential system. We then establish a permutability theorem for iterated Bianchi-Darboux transforms.Comment: 13 pages, amstex, to be published in IJ

    Hamiltonian flows on null curves

    Full text link
    The local motion of a null curve in Minkowski 3-space induces an evolution equation for its Lorentz invariant curvature. Special motions are constructed whose induced evolution equations are the members of the KdV hierarchy. The null curves which move under the KdV flow without changing shape are proven to be the trajectories of a certain particle model on null curves described by a Lagrangian linear in the curvature. In addition, it is shown that the curvature of a null curve which evolves by similarities can be computed in terms of the solutions of the second Painlev\'e equation.Comment: 14 pages, v2: final version; minor changes in the expositio

    On the Reliability of the Langevin Pertubative Solution in Stochastic Inflation

    Full text link
    A method to estimate the reliability of a perturbative expansion of the stochastic inflationary Langevin equation is presented and discussed. The method is applied to various inflationary scenarios, as large field, small field and running mass models. It is demonstrated that the perturbative approach is more reliable than could be naively suspected and, in general, only breaks down at the very end of inflation.Comment: 7 pages, 3 figure

    Reduction for constrained variational problems on 3D null curves

    Get PDF
    We consider the optimal control problem for null curves in de Sitter 3-space defined by a functional which is linear in the curvature of the trajectory. We show how techniques based on the method of moving frames and exterior differential systems, coupled with the reduction procedure for systems with a Lie group of symmetries lead to the integration by quadratures of the extremals. Explicit solutions are found in terms of elliptic functions and integrals.Comment: 16 page

    Coisotropic Variational Problems

    Full text link
    In this article we study constrained variational problems in one independent variable defined on the space of integral curves of a Frenet system in a homogeneous space G/H. We prove that if the Lagrangian is G-invariant and coisotropic then the extremal curves can be found by quadratures. Our proof is constructive and relies on the reduction theory for coisotropic optimal control problems. This gives a unified explanation of the integrability of several classical variational problems such as the total squared curvature functional, the projective, conformal and pseudo-conformal arc-length functionals, the Delaunay and the Poincar{\'e} variational problems

    Closed trajectories of a particle model on null curves in anti-de Sitter 3-space

    Full text link
    We study the existence of closed trajectories of a particle model on null curves in anti-de Sitter 3-space defined by a functional which is linear in the curvature of the particle path. Explicit expressions for the trajectories are found and the existence of infinitely many closed trajectories is proved.Comment: 12 pages, 1 figur

    Lagrangian Curves in a 4-dimensional affine symplectic space

    Get PDF
    Lagrangian curves in R4 entertain intriguing relationships with second order deformation of plane curves under the special affine group and null curves in a 3-dimensional Lorentzian space form. We provide a natural affine symplectic frame for Lagrangian curves. It allows us to classify La- grangrian curves with constant symplectic curvatures, to construct a class of Lagrangian tori in R4 and determine Lagrangian geodesic

    Classical Dynamical Systems from q-algebras:"cluster" variables and explicit solutions

    Full text link
    A general procedure to get the explicit solution of the equations of motion for N-body classical Hamiltonian systems equipped with coalgebra symmetry is introduced by defining a set of appropriate collective variables which are based on the iterations of the coproduct map on the generators of the algebra. In this way several examples of N-body dynamical systems obtained from q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2) Calogero-Gaudin system (q-CG), a q-Poincare' Gaudin system and a system of Ruijsenaars type arising from the same (non co-boundary) q-deformation of the (1+1) Poincare' algebra. Also, a unified interpretation of all these systems as different Poisson-Lie dynamics on the same three dimensional solvable Lie group is given.Comment: 19 Latex pages, No figure

    Coriolano Alberini y Waldo Frank

    Get PDF
    Fil: Musso de Cavallaro, María E..Fil: Sánchez, Norma Isabel
    corecore